首页 > 最新文献

Near Surface Geophysics最新文献

英文 中文
High‐resolution surface‐wave‐constrained mapping of sparse dynamic cone penetrometer tests 稀疏动态圆锥贯入仪测试的高分辨率地表波约束绘图
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-18 DOI: 10.1002/nsg.12321
Ao Wang, Fayçal Rejiba, Ludovic Bodet, Cécile Finco, Cyrille Fauchard
The dynamic cone penetrometer (DCP) provides local soil resistance information. The difference in the vertical and horizontal data resolution (centimetric vs. multi‐metric) makes it difficult to spatialize the DCP data directly. This study uses a high‐resolution section, extracted by the seismic surface‐wave method, as the auxiliary and physical constraint for mapping the DCP index (DCPI). Geostatistical formalism (kriging and cokriging) is used. The associated measurement error of the seismic surface‐wave data is also included in the cokriging system, that is, the cokriging with variance of measurement error (CKVME). The proposed methods are validated for the first time on a test site designed and constructed for this study, with known geotechnical perspectives. Seismic and high‐intensity DCP campaigns were performed on the test site. The results show that with decimating the number of DCP soundings, the kriging approach is no longer capable of estimating the lateral variation in the test site, and the root‐mean‐square error (RMSE) value of the kriging section is increased by . With the help of sections constraining the lateral variability model, the RMSE values of the cokriging and the CKVME sections are increased by and .
动态圆锥贯入仪(DCP)可提供当地土壤电阻信息。由于垂直和水平数据分辨率(厘米级与多米级)的差异,很难直接将 DCP 数据空间化。本研究采用地震面波法提取的高分辨率剖面,作为绘制 DCP 指数(DCPI)的辅助和物理约束。使用了地质统计形式(克里格法和克里格法)。地震面波数据的相关测量误差也包含在克里格法系统中,即测量误差方差克里格法(CKVME)。所提出的方法首次在为本研究设计和建造的试验场进行了验证,该试验场具有已知的岩土力学视角。在试验场进行了地震和高强度 DCP 运动。结果表明,随着 DCP 探测次数的减少,克里金方法不再能够估计试验场的横向变化,克里金剖面的均方根误差(RMSE)值增加了 。在横向变化模型约束剖面的帮助下,克里金法和 CKVME 剖面的均方根误差值分别增加了 .
{"title":"High‐resolution surface‐wave‐constrained mapping of sparse dynamic cone penetrometer tests","authors":"Ao Wang, Fayçal Rejiba, Ludovic Bodet, Cécile Finco, Cyrille Fauchard","doi":"10.1002/nsg.12321","DOIUrl":"https://doi.org/10.1002/nsg.12321","url":null,"abstract":"The dynamic cone penetrometer (DCP) provides local soil resistance information. The difference in the vertical and horizontal data resolution (centimetric vs. multi‐metric) makes it difficult to spatialize the DCP data directly. This study uses a high‐resolution section, extracted by the seismic surface‐wave method, as the auxiliary and physical constraint for mapping the DCP index (DCPI). Geostatistical formalism (kriging and cokriging) is used. The associated measurement error of the seismic surface‐wave data is also included in the cokriging system, that is, the cokriging with variance of measurement error (CKVME). The proposed methods are validated for the first time on a test site designed and constructed for this study, with known geotechnical perspectives. Seismic and high‐intensity DCP campaigns were performed on the test site. The results show that with decimating the number of DCP soundings, the kriging approach is no longer capable of estimating the lateral variation in the test site, and the root‐mean‐square error (RMSE) value of the kriging section is increased by . With the help of sections constraining the lateral variability model, the RMSE values of the cokriging and the CKVME sections are increased by and .","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"189 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen 将迭代弹性反向时间迁移应用于在混凝土台阶试件上获得的剪切水平超声回波数据
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-12 DOI: 10.1002/nsg.12318
Maria Grohmann, Ernst Niederleithinger, Christoph Büttner, Stefan Buske
The ultrasonic echo technique is broadly applied in non‐destructive testing (NDT) of concrete structures involving tasks such as measuring thickness, determining geometry and locating built‐in elements. To address the challenge of enhancing ultrasonic imaging for complex concrete constructions, we adapted a seismic imaging algorithm – reverse time migration (RTM) – for NDT in civil engineering. Unlike the traditionally applied synthetic aperture focusing technique (SAFT), RTM takes into account the full wavefield including primary and reflected arrivals as well as multiples. This capability enables RTM to effectively handle all wave phenomena, unlimited by changes in velocity and reflector inclinations. This paper concentrates on applying and evaluating a two‐dimensional elastic RTM algorithm that specifically addresses horizontally polarized shear (SH) waves only, as these are predominantly used in ultrasonic NDT of concrete structures. The elastic SH RTM algorithm was deployed for imaging real ultrasonic echo SH‐wave data obtained at a concrete specimen exhibiting a complex back wall geometry and containing four tendon ducts. As these features are frequently encountered in practical NDT scenarios, their precise imaging holds significant importance. By applying the elastic SH RTM algorithm, we successfully reproduced nearly all reflectors within the concrete specimen. In particular, we were capable of accurately reconstructing all vertically oriented reflectors as well as the circular cross sections of three tendon ducts, which was not achievable with traditional SAFT imaging. These findings demonstrate that elastic SH RTM holds the ability to considerably improve the imaging of complex concrete geometries, marking a crucial advancement for accurate, high‐quality ultrasonic NDT in civil engineering.
超声波回波技术广泛应用于混凝土结构的无损检测(NDT),涉及厚度测量、几何形状确定和内置元件定位等任务。为解决复杂混凝土结构的超声波成像增强难题,我们将地震成像算法--反向时间迁移(RTM)--应用于土木工程的无损检测。与传统应用的合成孔径聚焦技术(SAFT)不同,RTM 考虑到了整个波场,包括初至、反射到达和多重到达。这种能力使 RTM 能够有效处理所有波现象,不受速度和反射器倾斜度变化的限制。本文主要介绍一种二维弹性 RTM 算法的应用和评估,该算法只专门处理水平极化剪切(SH)波,因为这些波主要用于混凝土结构的超声无损检测。弹性 SH RTM 算法用于对混凝土试样获得的真实超声回波 SH 波数据进行成像,该试样具有复杂的后墙几何形状,并包含四条肌腱导管。由于这些特征在实际无损检测中经常出现,因此对它们进行精确成像具有重要意义。通过应用弹性 SH RTM 算法,我们成功地再现了混凝土试样内的几乎所有反射体。特别是,我们能够精确地重建所有垂直方向的反射体以及三个肌腱导管的圆形横截面,这是传统的 SAFT 成像无法实现的。这些研究结果表明,弹性 SH RTM 能够显著改善复杂混凝土几何形状的成像,标志着土木工程中精确、高质量超声无损检测的重要进步。
{"title":"Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen","authors":"Maria Grohmann, Ernst Niederleithinger, Christoph Büttner, Stefan Buske","doi":"10.1002/nsg.12318","DOIUrl":"https://doi.org/10.1002/nsg.12318","url":null,"abstract":"The ultrasonic echo technique is broadly applied in non‐destructive testing (NDT) of concrete structures involving tasks such as measuring thickness, determining geometry and locating built‐in elements. To address the challenge of enhancing ultrasonic imaging for complex concrete constructions, we adapted a seismic imaging algorithm – reverse time migration (RTM) – for NDT in civil engineering. Unlike the traditionally applied synthetic aperture focusing technique (SAFT), RTM takes into account the full wavefield including primary and reflected arrivals as well as multiples. This capability enables RTM to effectively handle all wave phenomena, unlimited by changes in velocity and reflector inclinations. This paper concentrates on applying and evaluating a two‐dimensional elastic RTM algorithm that specifically addresses horizontally polarized shear (SH) waves only, as these are predominantly used in ultrasonic NDT of concrete structures. The elastic SH RTM algorithm was deployed for imaging real ultrasonic echo SH‐wave data obtained at a concrete specimen exhibiting a complex back wall geometry and containing four tendon ducts. As these features are frequently encountered in practical NDT scenarios, their precise imaging holds significant importance. By applying the elastic SH RTM algorithm, we successfully reproduced nearly all reflectors within the concrete specimen. In particular, we were capable of accurately reconstructing all vertically oriented reflectors as well as the circular cross sections of three tendon ducts, which was not achievable with traditional SAFT imaging. These findings demonstrate that elastic SH RTM holds the ability to considerably improve the imaging of complex concrete geometries, marking a crucial advancement for accurate, high‐quality ultrasonic NDT in civil engineering.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"58 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fine‐tuning workflow for automatic first‐break picking with deep learning 利用深度学习对自动初选进行微调的工作流程
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-02 DOI: 10.1002/nsg.12316
Amir Mardan, Martin Blouin, Gabriel Fabien‐Ouellet, Bernard Giroux, Christophe Vergniault, Jeremy Gendreau
First‐break picking is an essential step in seismic data processing. For reliable results, first arrivals should be picked by an expert. This is a time‐consuming procedure and subjective to a certain degree, leading to different results for different operators. In this study, we have used a U‐Net architecture with residual blocks to perform automatic first‐break picking based on deep learning. Focusing on the effects of weight initialization on first‐break picking, we conduct this research by using the weights of a pre‐trained network that is used for object detection on the ImageNet dataset. The efficiency of the proposed method is tested on two real datasets. For both datasets, we pick manually the first breaks for less than 10 of the seismic shots. The pre‐trained network is fine‐tuned on the picked shots, and the rest of the shots are automatically picked by the neural network. It is shown that this strategy allows to reduce the size of the training set, requiring fine‐tuning with only a few picked shots per survey. Using random weights and more training epochs can lead to a lower training loss, but such a strategy leads to overfitting as the test error is higher than the one of the pre‐trained network. We also assess the possibility of using a general dataset by training a network with data from three different projects that are acquired with different equipment and at different locations. This study shows that if the general dataset is created carefully it can lead to more accurate first‐break picking; otherwise, the general dataset can decrease the accuracy. Focusing on near‐surface geophysics, we perform traveltime tomography and compare the inverted velocity models based on different first‐break picking methodologies. The results of the inversion show that the first breaks obtained by the pre‐trained network lead to a velocity model that is closer to the one obtained from the inversion of expert‐picked first breaks.
初至选取是地震数据处理的重要步骤。为了获得可靠的结果,初至应由专家挑选。这是一个耗时的过程,而且在一定程度上具有主观性,会导致不同操作员得到不同的结果。在这项研究中,我们使用了带有残差块的 U-Net 架构,基于深度学习来执行自动初至选取。针对权重初始化对初选的影响,我们使用在 ImageNet 数据集上用于物体检测的预训练网络的权重进行了研究。我们在两个真实数据集上测试了所提方法的效率。在这两个数据集中,我们手动选取了不到 10 个地震镜头的第一个断点。预先训练好的网络会对选取的地震道进行微调,其余地震道则由神经网络自动选取。结果表明,这种策略可以减少训练集的大小,每次勘测只需要微调几个选取的地震道。使用随机权重和更多的训练历元可以降低训练损失,但这种策略会导致过度拟合,因为测试误差高于预训练网络的误差。我们还评估了使用通用数据集的可能性,用三个不同项目的数据对网络进行了训练,这些数据是用不同设备在不同地点采集的。这项研究表明,如果精心创建通用数据集,就能提高初至选取的准确性;反之,通用数据集则会降低准确性。以近地表地球物理为重点,我们进行了旅行时间层析成像,并比较了基于不同初至选取方法的反演速度模型。反演结果表明,通过预训练网络获得的初至值所得到的速度模型更接近于通过专家挑选的初至值反演得到的速度模型。
{"title":"A fine‐tuning workflow for automatic first‐break picking with deep learning","authors":"Amir Mardan, Martin Blouin, Gabriel Fabien‐Ouellet, Bernard Giroux, Christophe Vergniault, Jeremy Gendreau","doi":"10.1002/nsg.12316","DOIUrl":"https://doi.org/10.1002/nsg.12316","url":null,"abstract":"First‐break picking is an essential step in seismic data processing. For reliable results, first arrivals should be picked by an expert. This is a time‐consuming procedure and subjective to a certain degree, leading to different results for different operators. In this study, we have used a U‐Net architecture with residual blocks to perform automatic first‐break picking based on deep learning. Focusing on the effects of weight initialization on first‐break picking, we conduct this research by using the weights of a pre‐trained network that is used for object detection on the ImageNet dataset. The efficiency of the proposed method is tested on two real datasets. For both datasets, we pick manually the first breaks for less than 10 of the seismic shots. The pre‐trained network is fine‐tuned on the picked shots, and the rest of the shots are automatically picked by the neural network. It is shown that this strategy allows to reduce the size of the training set, requiring fine‐tuning with only a few picked shots per survey. Using random weights and more training epochs can lead to a lower training loss, but such a strategy leads to overfitting as the test error is higher than the one of the pre‐trained network. We also assess the possibility of using a general dataset by training a network with data from three different projects that are acquired with different equipment and at different locations. This study shows that if the general dataset is created carefully it can lead to more accurate first‐break picking; otherwise, the general dataset can decrease the accuracy. Focusing on near‐surface geophysics, we perform traveltime tomography and compare the inverted velocity models based on different first‐break picking methodologies. The results of the inversion show that the first breaks obtained by the pre‐trained network lead to a velocity model that is closer to the one obtained from the inversion of expert‐picked first breaks.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"182 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical analysis of dielectric polarization effects in near‐surface earth materials in the 100 Hz–10 MHz frequency range: First interpretation paths 对 100 Hz-10 MHz 频率范围内近表面地球材料中的介电极化效应进行实验和数值分析:首次解释路径
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-27 DOI: 10.1002/nsg.12302
A. Tabbagh, B. Souffaché, D. Jougnot, A. Maineult, F. Rejiba, P. M. Adler, C. Schamper, J. Thiesson, C. Finco, A. Mendieta, F. Rembert, R. Guérin, C. Camerlynck
SummaryThe recent developments of electromagnetic induction and electrostatic prospection devices dedicated to critical zone surveys in both rural and urban contexts necessitate improving the interpretation of electrical properties through complementary laboratory studies. In a first interpretation step, the various experimental results obtained in the 100 Hz–10 MHz frequency range can be empirically fitted by a simple six‐term formula. It allows the reproduction of the logarithmic decrease of the real component of the effective relative permittivity and its corresponding imaginary component, the part associated with the direct current conductivity, one Cole–Cole relaxation and the real and imaginary components of the high‐frequency relative permittivity. For elucidating physical phenomena contributing to both the logarithmic decrease and the observed Cole–Cole relaxation, we first consider the Maxwell–Wagner–Sillars polarization. Using the method of moments, we establish that this continuous medium approach can reproduce a large range of relaxation characteristics. At the microscopic scale, the possible role of the rotation of the water molecules bound to solid grains is then investigated. In this case, contrary to the Maxwell–Wagner–Sillars approach, the relaxation parameters do not depend on the external medium properties.
摘要最近开发的电磁感应和静电探测设备专门用于农村和城市的临界区勘测,因此有必要通过补充实验室研究来改进电特性的解释。在第一个解释步骤中,在 100 Hz-10 MHz 频率范围内获得的各种实验结果可以通过一个简单的六项公式进行经验拟合。它可以再现有效相对介电常数实分量的对数下降及其相应的虚分量、与直流电导有关的部分、一次科尔-科尔弛豫以及高频相对介电常数的实分量和虚分量。为了阐明导致对数下降和观测到的科尔-科尔弛豫的物理现象,我们首先考虑了麦克斯韦-瓦格纳-西拉尔斯极化。利用矩法,我们确定这种连续介质方法可以再现很大范围的弛豫特性。然后,在微观尺度上研究了与固体晶粒结合的水分子旋转的可能作用。在这种情况下,与 Maxwell-Wagner-Sillars 方法相反,弛豫参数并不依赖于外部介质特性。
{"title":"Experimental and numerical analysis of dielectric polarization effects in near‐surface earth materials in the 100 Hz–10 MHz frequency range: First interpretation paths","authors":"A. Tabbagh, B. Souffaché, D. Jougnot, A. Maineult, F. Rejiba, P. M. Adler, C. Schamper, J. Thiesson, C. Finco, A. Mendieta, F. Rembert, R. Guérin, C. Camerlynck","doi":"10.1002/nsg.12302","DOIUrl":"https://doi.org/10.1002/nsg.12302","url":null,"abstract":"SummaryThe recent developments of electromagnetic induction and electrostatic prospection devices dedicated to critical zone surveys in both rural and urban contexts necessitate improving the interpretation of electrical properties through complementary laboratory studies. In a first interpretation step, the various experimental results obtained in the 100 Hz–10 MHz frequency range can be empirically fitted by a simple six‐term formula. It allows the reproduction of the logarithmic decrease of the real component of the effective relative permittivity and its corresponding imaginary component, the part associated with the direct current conductivity, one Cole–Cole relaxation and the real and imaginary components of the high‐frequency relative permittivity. For elucidating physical phenomena contributing to both the logarithmic decrease and the observed Cole–Cole relaxation, we first consider the Maxwell–Wagner–Sillars polarization. Using the method of moments, we establish that this continuous medium approach can reproduce a large range of relaxation characteristics. At the microscopic scale, the possible role of the rotation of the water molecules bound to solid grains is then investigated. In this case, contrary to the Maxwell–Wagner–Sillars approach, the relaxation parameters do not depend on the external medium properties.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"58 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian inversion and uncertainty analysis 贝叶斯反演和不确定性分析
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-22 DOI: 10.1002/nsg.12299
Nuoya Zhang, Huaifeng Sun, Dong Liu, Shangbin Liu
Quantification of non‐uniqueness and uncertainty is important for transient electromagnetism (TEM). To address this issue, we develop a trans‐dimensional Bayesian inversion schema for TEM data interpretation. The trans‐dimensional posterior probability density (PPD) offers a solution to model selection and quantifies parameter uncertainty resulting from the model selection from all possible models rather than determining a single model. We use the reversible‐jump Markov chain Monte Carlo sampler to draw ensembles of models to approximate PPD. In addition to providing reasonable model selection, we address the reliability of the inversion results for uncertainty analysis. This strategy offers reasonable guidance when interpreting the inversion results. We make the following improvements in this paper. First, in terms of algorithmic acceleration, we use the nonlinear optimization inversion results as the initial model and implement the multi‐chain parallel method. Second, we develop double factors to control the sampling step size of the proposed distribution, so that the sampling models cover the high‐probability region of the parameter space as much as possible. Finally, we provide the potential scale reduction factor‐η convergence criteria to assess the convergence of the samples and ensure the rationality of the output models. The proposed methodology is first tested on synthetic data and subsequently applied to a field dataset. The TEM inversion results show that probability inversion can provide reliable references for data interpretation through uncertainty analysis.
非唯一性和不确定性的量化对于瞬态电磁学(TEM)非常重要。为解决这一问题,我们开发了一种用于 TEM 数据解释的跨维贝叶斯反演模式。跨维后验概率密度(PPD)为模型选择提供了一种解决方案,并量化了从所有可能模型中选择模型而不是确定单一模型所产生的参数不确定性。我们使用可逆跳转马尔科夫链蒙特卡洛采样器绘制模型集合,以近似 PPD。除了提供合理的模型选择,我们还解决了不确定性分析中反演结果的可靠性问题。这一策略为解释反演结果提供了合理的指导。我们在本文中做了以下改进。首先,在算法加速方面,我们将非线性优化反演结果作为初始模型,并实现了多链并行方法。其次,我们开发了双因子来控制建议分布的采样步长,从而使采样模型尽可能覆盖参数空间的高概率区域。最后,我们提供了潜在规模缩减因子-η收敛标准来评估样本的收敛性,确保输出模型的合理性。建议的方法首先在合成数据上进行了测试,随后应用于实地数据集。TEM 反演结果表明,概率反演可通过不确定性分析为数据解释提供可靠的参考。
{"title":"Bayesian inversion and uncertainty analysis","authors":"Nuoya Zhang, Huaifeng Sun, Dong Liu, Shangbin Liu","doi":"10.1002/nsg.12299","DOIUrl":"https://doi.org/10.1002/nsg.12299","url":null,"abstract":"Quantification of non‐uniqueness and uncertainty is important for transient electromagnetism (TEM). To address this issue, we develop a trans‐dimensional Bayesian inversion schema for TEM data interpretation. The trans‐dimensional posterior probability density (PPD) offers a solution to model selection and quantifies parameter uncertainty resulting from the model selection from all possible models rather than determining a single model. We use the reversible‐jump Markov chain Monte Carlo sampler to draw ensembles of models to approximate PPD. In addition to providing reasonable model selection, we address the reliability of the inversion results for uncertainty analysis. This strategy offers reasonable guidance when interpreting the inversion results. We make the following improvements in this paper. First, in terms of algorithmic acceleration, we use the nonlinear optimization inversion results as the initial model and implement the multi‐chain parallel method. Second, we develop double factors to control the sampling step size of the proposed distribution, so that the sampling models cover the high‐probability region of the parameter space as much as possible. Finally, we provide the potential scale reduction factor‐<jats:italic>η</jats:italic> convergence criteria to assess the convergence of the samples and ensure the rationality of the output models. The proposed methodology is first tested on synthetic data and subsequently applied to a field dataset. The TEM inversion results show that probability inversion can provide reliable references for data interpretation through uncertainty analysis.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"19 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi‐mode non‐linear inversion of Rayleigh wave dispersion curves with grey wolf optimization and cuckoo search algorithm 利用灰狼优化和布谷鸟搜索算法对瑞利波频散曲线进行多模式非线性反演
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-03 DOI: 10.1002/nsg.12296
Han Che, Hongyan Shen, Qingchun Li, Guoxin Liu, Chenrui Yang, Yunpeng Sun, Shuai Liu
Dispersion curve inversion is one of the core contents of Rayleigh wave data processing. However, the dispersion curve inversion has the characteristics of multi‐parameter, multi‐extremum as well as nonlinearity. In the face of Rayleigh wave data processing under complex seismic‐geological conditions, it is difficult to reconstruct an underground structure quickly and accurately apply a single global‐searching non‐linear inversion algorithm. For this reason, we proposed a strategy to invert multi‐order mode Rayleigh wave dispersion curves by combining with grey wolf optimization (GWO) and cuckoo search (CS) algorithms. On the basis of introducing the mechanism of iterative chaotic map with infinite collapses (ICMIC) and the strategy of dimension learning–based hunting (DLH), an improved GWO was developed that was called IDGWO (ICMIC and DLH GWO). After searching the near‐optimal region through IDGWO, the CS with a variable step‐size Lévy flight search mechanism was switched adaptively to complete the final inversion. The correctness of our method was verified by the multi‐order mode dispersion curve inversion of a six‐layer high‐velocity interlayer model. Then it was further applied to the processing of real seismic datasets. The research results show that our method fully utilizes the advantages of each of the two global‐searching non‐linear algorithms after integrating IDGWO and CS, while effectively balancing the ability between global search and local exploitation, further improving the convergence speed and inversion accuracy and having good anti‐noise performance.
频散曲线反演是瑞利波数据处理的核心内容之一。然而,频散曲线反演具有多参数、多极端以及非线性等特点。面对复杂地震地质条件下的雷利波数据处理,单一的全局搜索非线性反演算法很难快速准确地重建地下结构。为此,我们提出了一种结合灰狼优化(GWO)和布谷鸟搜索(CS)算法的多阶模瑞利波频散曲线反演策略。在引入无限坍缩迭代混沌图(ICMIC)机制和基于维度学习的狩猎(DLH)策略的基础上,开发了一种改进的 GWO,称为 IDGWO(ICMIC 和 DLH GWO)。通过 IDGWO 搜索到近优区域后,自适应地切换具有可变步长莱维飞行搜索机制的 CS 来完成最终反演。六层高速层间模型的多阶模式频散曲线反演验证了我们方法的正确性。随后,该方法被进一步应用于实际地震数据集的处理。研究结果表明,我们的方法在集成 IDGWO 和 CS 后,充分发挥了两种全局搜索非线性算法各自的优势,同时有效地平衡了全局搜索和局部利用之间的能力,进一步提高了收敛速度和反演精度,具有良好的抗噪性能。
{"title":"Multi‐mode non‐linear inversion of Rayleigh wave dispersion curves with grey wolf optimization and cuckoo search algorithm","authors":"Han Che, Hongyan Shen, Qingchun Li, Guoxin Liu, Chenrui Yang, Yunpeng Sun, Shuai Liu","doi":"10.1002/nsg.12296","DOIUrl":"https://doi.org/10.1002/nsg.12296","url":null,"abstract":"Dispersion curve inversion is one of the core contents of Rayleigh wave data processing. However, the dispersion curve inversion has the characteristics of multi‐parameter, multi‐extremum as well as nonlinearity. In the face of Rayleigh wave data processing under complex seismic‐geological conditions, it is difficult to reconstruct an underground structure quickly and accurately apply a single global‐searching non‐linear inversion algorithm. For this reason, we proposed a strategy to invert multi‐order mode Rayleigh wave dispersion curves by combining with grey wolf optimization (GWO) and cuckoo search (CS) algorithms. On the basis of introducing the mechanism of iterative chaotic map with infinite collapses (ICMIC) and the strategy of dimension learning–based hunting (DLH), an improved GWO was developed that was called IDGWO (ICMIC and DLH GWO). After searching the near‐optimal region through IDGWO, the CS with a variable step‐size Lévy flight search mechanism was switched adaptively to complete the final inversion. The correctness of our method was verified by the multi‐order mode dispersion curve inversion of a six‐layer high‐velocity interlayer model. Then it was further applied to the processing of real seismic datasets. The research results show that our method fully utilizes the advantages of each of the two global‐searching non‐linear algorithms after integrating IDGWO and CS, while effectively balancing the ability between global search and local exploitation, further improving the convergence speed and inversion accuracy and having good anti‐noise performance.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"188 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning‐based extraction of surface wave dispersion curves from seismic shot gathers 基于深度学习的地震采集面波频散曲线提取方法
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-03 DOI: 10.1002/nsg.12298
Danilo Chamorro, Jiahua Zhao, Claire Birnie, Myrna Staring, Moritz Fliedner, Matteo Ravasi
Multi‐channel analysis of surface waves is a seismic method employed to obtain useful information about shear‐wave velocities in the near surface. A fundamental step in this methodology is the extraction of dispersion curves from dispersion spectra, with the latter usually obtained by applying specific processing algorithms onto the recorded shot gathers. Although the extraction process can be automated to some extent, it usually requires extensive quality control, which can be arduous for large datasets. We present a novel approach that leverages deep learning to identify a direct mapping between seismic shot gathers and their associated dispersion curves (both fundamental and first higher order modes), therefore by‐passing the need to compute dispersion spectra. Given a site of interest, a set of 1D compressional and shear velocities and density models are created using prior knowledge of the local geology; pairs of seismic shot gathers and Rayleigh‐wave phase dispersion curves are then numerically modelled and used to train a simplified residual network. The proposed approach is shown to achieve high‐quality predictions of dispersion curves on a synthetic test dataset and is, ultimately, successfully deployed on a field dataset. Various uncertainty quantification and convolutional neural network visualization techniques are also presented to assess the quality of the inference process and better understand the underlying learning process of the network. The predicted dispersion curves are inverted for both the synthetic and field data; in the latter case, the resulting shear‐wave velocity model is plausible and consistent with prior geological knowledge of the area. Finally, a comparison between the manually picked fundamental modes with the predictions from our model allows for a benchmark of the performance of the proposed workflow.
多道面波分析是一种地震方法,用于获取近地表剪切波速度的有用信息。这种方法的一个基本步骤是从频散谱中提取频散曲线,后者通常是通过对记录的震波集束采用特定的处理算法获得的。虽然提取过程可以在一定程度上实现自动化,但通常需要进行大量的质量控制,这对于大型数据集来说可能非常困难。我们提出了一种新方法,利用深度学习来识别地震震源采集与其相关频散曲线(基频和一阶高频模式)之间的直接映射,因此无需计算频散谱。给定一个感兴趣的地点,利用当地地质的先验知识创建一组一维压缩和剪切速度及密度模型;然后对地震震源采集和雷利波相位频散曲线进行数值建模,并用于训练简化的残差网络。结果表明,所提出的方法可在合成测试数据集上实现高质量的频散曲线预测,并最终成功应用于野外数据集。此外,还介绍了各种不确定性量化和卷积神经网络可视化技术,以评估推理过程的质量,更好地理解网络的基本学习过程。对合成数据和现场数据的预测频散曲线都进行了反演;在后一种情况下,所得到的剪切波速度模型是可信的,并与该地区先前的地质知识相一致。最后,将人工选取的基本模式与我们模型的预测结果进行比较,可以作为建议工作流程性能的基准。
{"title":"Deep learning‐based extraction of surface wave dispersion curves from seismic shot gathers","authors":"Danilo Chamorro, Jiahua Zhao, Claire Birnie, Myrna Staring, Moritz Fliedner, Matteo Ravasi","doi":"10.1002/nsg.12298","DOIUrl":"https://doi.org/10.1002/nsg.12298","url":null,"abstract":"Multi‐channel analysis of surface waves is a seismic method employed to obtain useful information about shear‐wave velocities in the near surface. A fundamental step in this methodology is the extraction of dispersion curves from dispersion spectra, with the latter usually obtained by applying specific processing algorithms onto the recorded shot gathers. Although the extraction process can be automated to some extent, it usually requires extensive quality control, which can be arduous for large datasets. We present a novel approach that leverages deep learning to identify a direct mapping between seismic shot gathers and their associated dispersion curves (both fundamental and first higher order modes), therefore by‐passing the need to compute dispersion spectra. Given a site of interest, a set of 1D compressional and shear velocities and density models are created using prior knowledge of the local geology; pairs of seismic shot gathers and Rayleigh‐wave phase dispersion curves are then numerically modelled and used to train a simplified residual network. The proposed approach is shown to achieve high‐quality predictions of dispersion curves on a synthetic test dataset and is, ultimately, successfully deployed on a field dataset. Various uncertainty quantification and convolutional neural network visualization techniques are also presented to assess the quality of the inference process and better understand the underlying learning process of the network. The predicted dispersion curves are inverted for both the synthetic and field data; in the latter case, the resulting shear‐wave velocity model is plausible and consistent with prior geological knowledge of the area. Finally, a comparison between the manually picked fundamental modes with the predictions from our model allows for a benchmark of the performance of the proposed workflow.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"165 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing shallow fault zones by integrating profile, borehole and array measurements of seismic data and distributed acoustic sensing 通过整合地震数据的剖面、钻孔和阵列测量以及分布式声学传感,确定浅断层带的特征
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-01 DOI: 10.1002/nsg.12293
Nikolaus Rein, Marius P. Isken, Dorina Domigall, Matthias Ohrnberger, Katrin Hannemann, Frank Krüger, Michael Korn, Torsten Dahm
Within the framework of the Intercontinental Scientific Drilling Programme (ICDP) ‘Drilling the Eger Rift’ project, five boreholes were drilled in the Vogtland (Germany) and West Bohemia (Czech Republic) regions. Three of them will be used to install high‐frequency three‐dimensional (3D) seismic arrays. The pilot 3D array is located 1.5 km south of Landwüst (Vogtland). The borehole, with a depth of 402 m, was equipped with eight geophones and a fibre optic cable behind the casing used for distributed acoustic sensing (DAS) measurements. The borehole is surrounded by a surface array consisting of 12 seismic stations with an aperture of 400 m. During drilling, a highly fractured zone was detected between 90 m and 165 m depth and interpreted as a possible fault zone. To characterize the fault zone, two vertical seismic profiling (VSP) experiments with drop weight sources at the surface were conducted. The aim of the VSP experiments was to estimate a local 3D seismic velocity tomography including the imaging of the steep fault zone. Our 3D tomography indicates P‐wave velocities between 1500 m/s and 3000 m/s at shallow depths (0–20 m) and higher P‐wave velocities of up to 5000 m/s at greater depths. In addition, the results suggest a NW–SE striking low‐velocity zone (LVZ; characterized by = 1500–3000 m/s), which crosses the borehole at a depth of about 90–165 m. This LVZ is inferred to be a shallow non‐tectonic, steep fault zone with a dip angle of about . The depth and width of the fault zone are supported by logging data as electrical conductivity, core recovery and changes in lithology. In this study, we present an example to test and verify 3D tomography and imaging approaches of shallow non‐tectonic fault zones based on active seismic experiments using simple surface drop weights as sources and borehole chains as well as borehole DAS behind casing as sensors, complemented by seismic stand‐alone surface arrays.
在洲际科学钻探计划(ICDP)"埃格尔裂谷钻探 "项目框架内,在沃格特兰(德国)和西波希米亚(捷克共和国)地区钻探了五个钻孔。其中三个将用于安装高频三维(3D)地震阵列。试验性三维阵列位于 Landwüst(沃格特兰)以南 1.5 公里处。钻孔深度为 402 米,配备了 8 个检波器,套管后方的光纤电缆用于分布式声学传感 (DAS) 测量。钻探过程中,在 90 米至 165 米深度之间发现了一个高度断裂带,被解释为可能的断层带。为了确定该断层带的特征,在地表进行了两次垂直地震剖面(VSP)试验,使用了落锤震源。垂直地震剖面试验的目的是估算当地的三维地震速度层析,包括陡峭断层带的成像。我们的三维地震层析显示,浅层(0-20 米)的 P 波速度介于 1500 米/秒和 3000 米/秒之间,更深处的 P 波速度高达 5000 米/秒。此外,研究结果表明,有一个西北-东南走向的低速带(LVZ;特征为 = 1500-3000 m/s),在约 90-165 米深处穿过钻孔。电导率、岩心回收率和岩性变化等测井数据为断层带的深度和宽度提供了支持。在本研究中,我们以主动地震实验为基础,以简单的地表落锤为震源,以井眼链和套管后的井眼 DAS 为传感器,辅以地震独立地表阵列,对非构造浅断层带的三维层析成像方法进行了测试和验证。
{"title":"Characterizing shallow fault zones by integrating profile, borehole and array measurements of seismic data and distributed acoustic sensing","authors":"Nikolaus Rein, Marius P. Isken, Dorina Domigall, Matthias Ohrnberger, Katrin Hannemann, Frank Krüger, Michael Korn, Torsten Dahm","doi":"10.1002/nsg.12293","DOIUrl":"https://doi.org/10.1002/nsg.12293","url":null,"abstract":"Within the framework of the Intercontinental Scientific Drilling Programme (ICDP) ‘Drilling the Eger Rift’ project, five boreholes were drilled in the Vogtland (Germany) and West Bohemia (Czech Republic) regions. Three of them will be used to install high‐frequency three‐dimensional (3D) seismic arrays. The pilot 3D array is located 1.5 km south of Landwüst (Vogtland). The borehole, with a depth of 402 m, was equipped with eight geophones and a fibre optic cable behind the casing used for distributed acoustic sensing (DAS) measurements. The borehole is surrounded by a surface array consisting of 12 seismic stations with an aperture of 400 m. During drilling, a highly fractured zone was detected between 90 m and 165 m depth and interpreted as a possible fault zone. To characterize the fault zone, two vertical seismic profiling (VSP) experiments with drop weight sources at the surface were conducted. The aim of the VSP experiments was to estimate a local 3D seismic velocity tomography including the imaging of the steep fault zone. Our 3D tomography indicates P‐wave velocities between 1500 m/s and 3000 m/s at shallow depths (0–20 m) and higher P‐wave velocities of up to 5000 m/s at greater depths. In addition, the results suggest a NW–SE striking low‐velocity zone (LVZ; characterized by = 1500–3000 m/s), which crosses the borehole at a depth of about 90–165 m. This LVZ is inferred to be a shallow non‐tectonic, steep fault zone with a dip angle of about . The depth and width of the fault zone are supported by logging data as electrical conductivity, core recovery and changes in lithology. In this study, we present an example to test and verify 3D tomography and imaging approaches of shallow non‐tectonic fault zones based on active seismic experiments using simple surface drop weights as sources and borehole chains as well as borehole DAS behind casing as sensors, complemented by seismic stand‐alone surface arrays.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"65 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gravity modelling by using vertical prismatic polyhedra and application to a sedimentary basin in Eastern Anatolia 利用垂直棱柱多面体建立重力模型并将其应用于安纳托利亚东部的一个沉积盆地
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-28 DOI: 10.1002/nsg.12297
Nedim Gökhan Aydın, Turgay İşseven
There are various methods suggested for modelling the geometry of sedimentary basins by using gravity anomalies in the literature. When dealing with datasets that are non-uniformly distributed across a study area, the choice of modelling method can significantly impact data reliability and computational resource usage. In this study, we present a gravity modelling approach utilizing prismatic vertical polyhedra. First, we summarize the requirement of such a method by highlighting limitations associated with a commonly employed modelling method that uses rectangular grid-following vertical prisms for modelling. By contrast, we propose a method that adapts a polygonal mesh to the distribution of input gravity data points, each polygonal mesh cell containing one data point and using polygonal grid-following vertical prisms for gravity modelling. To validate our method, we conduct tests using two synthetically constructed subsurface models – one featuring a normal fault and the other a deep basin. These are used to generate synthetic gravity observation data at irregularly spaced points that broadly follow the geology. The data are then inverted for obtaining subsurface structures by modelling with (a) rectangular prisms on a regular grid and (b) with our polygonal prisms on the tessellated grid. The inversion process involves calculating the heights of the prisms in both approaches, assuming a constant density contrast. The comparative analysis demonstrates the superior effectiveness of our approach (b). Finally, we apply our newly developed method to real gravity data recently collected from Gezin province, situated in the north-eastern region of the Lake Hazar pull-apart basin in Eastern Turkey. Our modelling results reveal previously underestimated basin geometry, suggesting the presence of an additional, previously unidentified fault to the east of Gezin, which forms the southern boundary of the basin.
文献中提出了多种利用重力异常模拟沉积盆地几何形状的方法。在处理整个研究区域非均匀分布的数据集时,建模方法的选择会对数据的可靠性和计算资源的使用产生重大影响。在本研究中,我们提出了一种利用棱柱垂直多面体的重力建模方法。首先,我们总结了对这种方法的要求,强调了常用建模方法的局限性,即使用矩形网格垂直多面体建模。相比之下,我们提出了一种根据输入重力数据点的分布调整多边形网格的方法,每个多边形网格单元包含一个数据点,并使用多边形网格追随垂直棱镜进行重力建模。为了验证我们的方法,我们使用两个合成的地下模型进行了测试--一个是正断层,另一个是深盆地。这些模型用于在不规则间隔的点上生成合成重力观测数据,这些点大体上与地质情况一致。然后对数据进行反演,通过(a)在规则网格上用矩形棱镜建模和(b)在细分网格上用多边形棱镜建模来获得地下结构。反演过程包括计算两种方法中棱柱的高度,并假设密度对比不变。对比分析表明,我们的方法(b)更加有效。最后,我们将新开发的方法应用于最近从 Gezin 省收集到的实际重力数据,该省位于土耳其东部哈扎尔湖拉开盆地的东北部地区。我们的建模结果揭示了之前被低估的盆地几何形状,表明在 Gezin 东部还存在一个之前未被发现的断层,它构成了盆地的南部边界。
{"title":"Gravity modelling by using vertical prismatic polyhedra and application to a sedimentary basin in Eastern Anatolia","authors":"Nedim Gökhan Aydın, Turgay İşseven","doi":"10.1002/nsg.12297","DOIUrl":"https://doi.org/10.1002/nsg.12297","url":null,"abstract":"There are various methods suggested for modelling the geometry of sedimentary basins by using gravity anomalies in the literature. When dealing with datasets that are non-uniformly distributed across a study area, the choice of modelling method can significantly impact data reliability and computational resource usage. In this study, we present a gravity modelling approach utilizing prismatic vertical polyhedra. First, we summarize the requirement of such a method by highlighting limitations associated with a commonly employed modelling method that uses rectangular grid-following vertical prisms for modelling. By contrast, we propose a method that adapts a polygonal mesh to the distribution of input gravity data points, each polygonal mesh cell containing one data point and using polygonal grid-following vertical prisms for gravity modelling. To validate our method, we conduct tests using two synthetically constructed subsurface models – one featuring a normal fault and the other a deep basin. These are used to generate synthetic gravity observation data at irregularly spaced points that broadly follow the geology. The data are then inverted for obtaining subsurface structures by modelling with (a) rectangular prisms on a regular grid and (b) with our polygonal prisms on the tessellated grid. The inversion process involves calculating the heights of the prisms in both approaches, assuming a constant density contrast. The comparative analysis demonstrates the superior effectiveness of our approach (b). Finally, we apply our newly developed method to real gravity data recently collected from Gezin province, situated in the north-eastern region of the Lake Hazar pull-apart basin in Eastern Turkey. Our modelling results reveal previously underestimated basin geometry, suggesting the presence of an additional, previously unidentified fault to the east of Gezin, which forms the southern boundary of the basin.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"16 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of legacy gravity data reveals sediment‐filled troughs buried under Flathead Valley, Montana, USA 对遗留重力数据的分析揭示了埋藏在美国蒙大拿州弗拉特黑德山谷地下的沉积槽
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-22 DOI: 10.1002/nsg.12295
Ali Gebril, Mohamed A. Khalil, R. M. Joeckel, James Rose
Shallow, dominantly silt‐ and clay‐filled erosional troughs in Quaternary sediments under the Flathead Valley (northwestern Montana, USA) are very likely to be hydraulic barriers limiting the horizontal flow of groundwater. Accurately mapping them is important because of increasing demand for groundwater. We used a legacy Bouguer gravity map measured in 1968. The directional derivatives of the map are computed, and the map was enhanced by implementing edge detection tools. We produced generalized derivative, maximum horizontal gradient, total gradient and tilt gradient maps through two‐dimensional Fourier transform analysis. These maps were remarkably successful in locating buried troughs in the northern and northwestern parts of the study area, closely matching locations determined previously from compiled borehole data. Our results also identify hitherto unknown extensions of troughs and indicate that some of the buried troughs may be connected.
美国蒙大拿州西北部弗拉特黑德山谷(Flathead Valley)地下第四纪沉积物中以淤泥和粘土为主的浅层侵蚀槽很可能是限制地下水水平流动的水力障碍。由于对地下水的需求不断增加,因此准确绘制这些水槽的地图非常重要。我们使用了 1968 年测量的布格重力地图。我们计算了地图的方向导数,并通过边缘检测工具对地图进行了增强。通过二维傅里叶变换分析,我们绘制了广义导数图、最大水平梯度图、总梯度图和倾斜梯度图。这些地图非常成功地定位了研究区域北部和西北部的埋藏槽,与之前通过汇编钻孔数据确定的位置非常吻合。我们的研究结果还确定了迄今未知的地槽延伸部分,并表明一些埋藏的地槽可能是相连的。
{"title":"Analysis of legacy gravity data reveals sediment‐filled troughs buried under Flathead Valley, Montana, USA","authors":"Ali Gebril, Mohamed A. Khalil, R. M. Joeckel, James Rose","doi":"10.1002/nsg.12295","DOIUrl":"https://doi.org/10.1002/nsg.12295","url":null,"abstract":"Shallow, dominantly silt‐ and clay‐filled erosional troughs in Quaternary sediments under the Flathead Valley (northwestern Montana, USA) are very likely to be hydraulic barriers limiting the horizontal flow of groundwater. Accurately mapping them is important because of increasing demand for groundwater. We used a legacy Bouguer gravity map measured in 1968. The directional derivatives of the map are computed, and the map was enhanced by implementing edge detection tools. We produced generalized derivative, maximum horizontal gradient, total gradient and tilt gradient maps through two‐dimensional Fourier transform analysis. These maps were remarkably successful in locating buried troughs in the northern and northwestern parts of the study area, closely matching locations determined previously from compiled borehole data. Our results also identify hitherto unknown extensions of troughs and indicate that some of the buried troughs may be connected.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"24 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Near Surface Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1