首页 > 最新文献

Near Surface Geophysics最新文献

英文 中文
Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen 将迭代弹性反向时间迁移应用于在混凝土台阶试件上获得的剪切水平超声回波数据
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-12 DOI: 10.1002/nsg.12318
Maria Grohmann, Ernst Niederleithinger, Christoph Büttner, Stefan Buske
The ultrasonic echo technique is broadly applied in non‐destructive testing (NDT) of concrete structures involving tasks such as measuring thickness, determining geometry and locating built‐in elements. To address the challenge of enhancing ultrasonic imaging for complex concrete constructions, we adapted a seismic imaging algorithm – reverse time migration (RTM) – for NDT in civil engineering. Unlike the traditionally applied synthetic aperture focusing technique (SAFT), RTM takes into account the full wavefield including primary and reflected arrivals as well as multiples. This capability enables RTM to effectively handle all wave phenomena, unlimited by changes in velocity and reflector inclinations. This paper concentrates on applying and evaluating a two‐dimensional elastic RTM algorithm that specifically addresses horizontally polarized shear (SH) waves only, as these are predominantly used in ultrasonic NDT of concrete structures. The elastic SH RTM algorithm was deployed for imaging real ultrasonic echo SH‐wave data obtained at a concrete specimen exhibiting a complex back wall geometry and containing four tendon ducts. As these features are frequently encountered in practical NDT scenarios, their precise imaging holds significant importance. By applying the elastic SH RTM algorithm, we successfully reproduced nearly all reflectors within the concrete specimen. In particular, we were capable of accurately reconstructing all vertically oriented reflectors as well as the circular cross sections of three tendon ducts, which was not achievable with traditional SAFT imaging. These findings demonstrate that elastic SH RTM holds the ability to considerably improve the imaging of complex concrete geometries, marking a crucial advancement for accurate, high‐quality ultrasonic NDT in civil engineering.
超声波回波技术广泛应用于混凝土结构的无损检测(NDT),涉及厚度测量、几何形状确定和内置元件定位等任务。为解决复杂混凝土结构的超声波成像增强难题,我们将地震成像算法--反向时间迁移(RTM)--应用于土木工程的无损检测。与传统应用的合成孔径聚焦技术(SAFT)不同,RTM 考虑到了整个波场,包括初至、反射到达和多重到达。这种能力使 RTM 能够有效处理所有波现象,不受速度和反射器倾斜度变化的限制。本文主要介绍一种二维弹性 RTM 算法的应用和评估,该算法只专门处理水平极化剪切(SH)波,因为这些波主要用于混凝土结构的超声无损检测。弹性 SH RTM 算法用于对混凝土试样获得的真实超声回波 SH 波数据进行成像,该试样具有复杂的后墙几何形状,并包含四条肌腱导管。由于这些特征在实际无损检测中经常出现,因此对它们进行精确成像具有重要意义。通过应用弹性 SH RTM 算法,我们成功地再现了混凝土试样内的几乎所有反射体。特别是,我们能够精确地重建所有垂直方向的反射体以及三个肌腱导管的圆形横截面,这是传统的 SAFT 成像无法实现的。这些研究结果表明,弹性 SH RTM 能够显著改善复杂混凝土几何形状的成像,标志着土木工程中精确、高质量超声无损检测的重要进步。
{"title":"Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen","authors":"Maria Grohmann, Ernst Niederleithinger, Christoph Büttner, Stefan Buske","doi":"10.1002/nsg.12318","DOIUrl":"https://doi.org/10.1002/nsg.12318","url":null,"abstract":"The ultrasonic echo technique is broadly applied in non‐destructive testing (NDT) of concrete structures involving tasks such as measuring thickness, determining geometry and locating built‐in elements. To address the challenge of enhancing ultrasonic imaging for complex concrete constructions, we adapted a seismic imaging algorithm – reverse time migration (RTM) – for NDT in civil engineering. Unlike the traditionally applied synthetic aperture focusing technique (SAFT), RTM takes into account the full wavefield including primary and reflected arrivals as well as multiples. This capability enables RTM to effectively handle all wave phenomena, unlimited by changes in velocity and reflector inclinations. This paper concentrates on applying and evaluating a two‐dimensional elastic RTM algorithm that specifically addresses horizontally polarized shear (SH) waves only, as these are predominantly used in ultrasonic NDT of concrete structures. The elastic SH RTM algorithm was deployed for imaging real ultrasonic echo SH‐wave data obtained at a concrete specimen exhibiting a complex back wall geometry and containing four tendon ducts. As these features are frequently encountered in practical NDT scenarios, their precise imaging holds significant importance. By applying the elastic SH RTM algorithm, we successfully reproduced nearly all reflectors within the concrete specimen. In particular, we were capable of accurately reconstructing all vertically oriented reflectors as well as the circular cross sections of three tendon ducts, which was not achievable with traditional SAFT imaging. These findings demonstrate that elastic SH RTM holds the ability to considerably improve the imaging of complex concrete geometries, marking a crucial advancement for accurate, high‐quality ultrasonic NDT in civil engineering.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative imaging of iron deposits using cross‐gradient joint inversion of potential field data with petrophysical correlation 利用电位场数据的跨梯度联合反演和岩石物理相关性对铁矿床进行创新成像
IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-08 DOI: 10.1002/nsg.12317
Bardiya Sadraeifar, Maysam Abedi
This study demonstrates the application of the cross‐gradient joint inversion method to investigate iron mineralization zones within a volcano‐sedimentary environment. The presence of minerals with intense contrasts in density or magnetic susceptibility, such as hematite or magnetite, facilitates modelling the distribution of ore bodies with depth. Our approach involves establishing a unified interpretation of reconstructed density and susceptibility models through both independent and joint inversion with sparsity regularization in conjunction with a petrophysical model resulting from core data. This approach provides an ideal strategy to uncover the realistic geologic setting of iron ore deposits. We initially simulated a synthetic model closely resembling real‐case scenarios to assess the efficacy of the cross‐gradient joint inversion algorithm in comparison to independent inversion. Subsequently, the inversion algorithms were implemented on gravity and magnetic data, collected over an area of 500 × 600 m2 in Shavaz iron‐bearing deposits located in the central Iranian block. The primary iron oxide–apatite type mineralization in the study area is associated with the Nain–Dehshir–Baft fault as a NW–SE trending strike‐slip fault. Although both inversion methods yield satisfactory models, incorporating the cross‐gradient constraint in joint inversion resulted in a more constrained delineation of iron–oxide ore deposits in the fault system. This improvement facilitates the differentiation between hematite and a small percentage of magnetite, providing a more accurate estimation of ore depth. Inversion results suggest that the magnetite mineralization is coated with extensive hematite mineralization and both are positioned relatively within the same depth interval, covered by approximately a 15–25 m sequence of sediments.
这项研究展示了跨梯度联合反演法在火山沉积环境中铁成矿带研究中的应用。赤铁矿或磁铁矿等密度或磁感应强度对比强烈的矿物的存在,有助于建立矿体随深度分布的模型。我们的方法包括通过独立反演和联合反演,结合稀疏正则化以及岩芯数据产生的岩石物理模型,对重建的密度和磁感应强度模型进行统一解释。这种方法是揭示铁矿石矿床真实地质环境的理想策略。我们首先模拟了一个与实际情况非常相似的合成模型,以评估交叉梯度联合反演算法与独立反演算法的功效。随后,在伊朗中部沙瓦兹含铁矿床采集的 500 × 600 平方米区域的重力和磁力数据上实施了反演算法。研究区域的主要氧化铁-磷灰石型矿化与 Nain-Dehshir-Baft 断层有关,该断层为西北-东南走向的走向滑动断层。虽然两种反演方法都能得到令人满意的模型,但在联合反演中加入跨梯度约束,能更准确地划分出断层系统中的氧化铁矿床。这种改进有利于区分赤铁矿和小部分磁铁矿,从而更准确地估计矿石深度。反演结果表明,磁铁矿化被广泛的赤铁矿化所覆盖,两者相对位于同一深度区间,被大约 15-25 米的沉积物序列所覆盖。
{"title":"Innovative imaging of iron deposits using cross‐gradient joint inversion of potential field data with petrophysical correlation","authors":"Bardiya Sadraeifar, Maysam Abedi","doi":"10.1002/nsg.12317","DOIUrl":"https://doi.org/10.1002/nsg.12317","url":null,"abstract":"This study demonstrates the application of the cross‐gradient joint inversion method to investigate iron mineralization zones within a volcano‐sedimentary environment. The presence of minerals with intense contrasts in density or magnetic susceptibility, such as hematite or magnetite, facilitates modelling the distribution of ore bodies with depth. Our approach involves establishing a unified interpretation of reconstructed density and susceptibility models through both independent and joint inversion with sparsity regularization in conjunction with a petrophysical model resulting from core data. This approach provides an ideal strategy to uncover the realistic geologic setting of iron ore deposits. We initially simulated a synthetic model closely resembling real‐case scenarios to assess the efficacy of the cross‐gradient joint inversion algorithm in comparison to independent inversion. Subsequently, the inversion algorithms were implemented on gravity and magnetic data, collected over an area of 500 × 600 m2 in Shavaz iron‐bearing deposits located in the central Iranian block. The primary iron oxide–apatite type mineralization in the study area is associated with the Nain–Dehshir–Baft fault as a NW–SE trending strike‐slip fault. Although both inversion methods yield satisfactory models, incorporating the cross‐gradient constraint in joint inversion resulted in a more constrained delineation of iron–oxide ore deposits in the fault system. This improvement facilitates the differentiation between hematite and a small percentage of magnetite, providing a more accurate estimation of ore depth. Inversion results suggest that the magnetite mineralization is coated with extensive hematite mineralization and both are positioned relatively within the same depth interval, covered by approximately a 15–25 m sequence of sediments.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fine‐tuning workflow for automatic first‐break picking with deep learning 利用深度学习对自动初选进行微调的工作流程
IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-02 DOI: 10.1002/nsg.12316
Amir Mardan, Martin Blouin, Gabriel Fabien‐Ouellet, Bernard Giroux, Christophe Vergniault, Jeremy Gendreau
First‐break picking is an essential step in seismic data processing. For reliable results, first arrivals should be picked by an expert. This is a time‐consuming procedure and subjective to a certain degree, leading to different results for different operators. In this study, we have used a U‐Net architecture with residual blocks to perform automatic first‐break picking based on deep learning. Focusing on the effects of weight initialization on first‐break picking, we conduct this research by using the weights of a pre‐trained network that is used for object detection on the ImageNet dataset. The efficiency of the proposed method is tested on two real datasets. For both datasets, we pick manually the first breaks for less than 10 of the seismic shots. The pre‐trained network is fine‐tuned on the picked shots, and the rest of the shots are automatically picked by the neural network. It is shown that this strategy allows to reduce the size of the training set, requiring fine‐tuning with only a few picked shots per survey. Using random weights and more training epochs can lead to a lower training loss, but such a strategy leads to overfitting as the test error is higher than the one of the pre‐trained network. We also assess the possibility of using a general dataset by training a network with data from three different projects that are acquired with different equipment and at different locations. This study shows that if the general dataset is created carefully it can lead to more accurate first‐break picking; otherwise, the general dataset can decrease the accuracy. Focusing on near‐surface geophysics, we perform traveltime tomography and compare the inverted velocity models based on different first‐break picking methodologies. The results of the inversion show that the first breaks obtained by the pre‐trained network lead to a velocity model that is closer to the one obtained from the inversion of expert‐picked first breaks.
初至选取是地震数据处理的重要步骤。为了获得可靠的结果,初至应由专家挑选。这是一个耗时的过程,而且在一定程度上具有主观性,会导致不同操作员得到不同的结果。在这项研究中,我们使用了带有残差块的 U-Net 架构,基于深度学习来执行自动初至选取。针对权重初始化对初选的影响,我们使用在 ImageNet 数据集上用于物体检测的预训练网络的权重进行了研究。我们在两个真实数据集上测试了所提方法的效率。在这两个数据集中,我们手动选取了不到 10 个地震镜头的第一个断点。预先训练好的网络会对选取的地震道进行微调,其余地震道则由神经网络自动选取。结果表明,这种策略可以减少训练集的大小,每次勘测只需要微调几个选取的地震道。使用随机权重和更多的训练历元可以降低训练损失,但这种策略会导致过度拟合,因为测试误差高于预训练网络的误差。我们还评估了使用通用数据集的可能性,用三个不同项目的数据对网络进行了训练,这些数据是用不同设备在不同地点采集的。这项研究表明,如果精心创建通用数据集,就能提高初至选取的准确性;反之,通用数据集则会降低准确性。以近地表地球物理为重点,我们进行了旅行时间层析成像,并比较了基于不同初至选取方法的反演速度模型。反演结果表明,通过预训练网络获得的初至值所得到的速度模型更接近于通过专家挑选的初至值反演得到的速度模型。
{"title":"A fine‐tuning workflow for automatic first‐break picking with deep learning","authors":"Amir Mardan, Martin Blouin, Gabriel Fabien‐Ouellet, Bernard Giroux, Christophe Vergniault, Jeremy Gendreau","doi":"10.1002/nsg.12316","DOIUrl":"https://doi.org/10.1002/nsg.12316","url":null,"abstract":"First‐break picking is an essential step in seismic data processing. For reliable results, first arrivals should be picked by an expert. This is a time‐consuming procedure and subjective to a certain degree, leading to different results for different operators. In this study, we have used a U‐Net architecture with residual blocks to perform automatic first‐break picking based on deep learning. Focusing on the effects of weight initialization on first‐break picking, we conduct this research by using the weights of a pre‐trained network that is used for object detection on the ImageNet dataset. The efficiency of the proposed method is tested on two real datasets. For both datasets, we pick manually the first breaks for less than 10 of the seismic shots. The pre‐trained network is fine‐tuned on the picked shots, and the rest of the shots are automatically picked by the neural network. It is shown that this strategy allows to reduce the size of the training set, requiring fine‐tuning with only a few picked shots per survey. Using random weights and more training epochs can lead to a lower training loss, but such a strategy leads to overfitting as the test error is higher than the one of the pre‐trained network. We also assess the possibility of using a general dataset by training a network with data from three different projects that are acquired with different equipment and at different locations. This study shows that if the general dataset is created carefully it can lead to more accurate first‐break picking; otherwise, the general dataset can decrease the accuracy. Focusing on near‐surface geophysics, we perform traveltime tomography and compare the inverted velocity models based on different first‐break picking methodologies. The results of the inversion show that the first breaks obtained by the pre‐trained network lead to a velocity model that is closer to the one obtained from the inversion of expert‐picked first breaks.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to promote geophysics as a standard tool for geotechnical investigations 如何促进地球物理学成为岩土工程勘察的标准工具
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-15 DOI: 10.1002/nsg.12313
J. Gustafsson, H. Higgs
There are a number of success stories of how geophysical investigations have been combined with geotechnical investigations to increase the knowledge of our subsurface from around the world. However, there is still a lack of understanding between these two professions, geophysicists and geotechnical engineers. The lack of understanding mainly considers what different geophysical methods deliver in form of results and accuracy. To promote the use of geophysical investigations even more, we need to address the purpose and expectations of the geophysical investigations, the awareness of method limitations and uncertainties of the different methods, and which standards and tools for interpretation and visualization are used.
地球物理勘测与岩土工程勘测相结合,增加了我们对地下世界的了解,这方面的成功案例不胜枚举。然而,地球物理学家和岩土工程师这两个专业之间仍然缺乏了解。缺乏了解主要是考虑到不同的地球物理方法在结果和准确性方面的不同。为了进一步推广地球物理调查的使用,我们需要解决地球物理调查的目的和期望、对不同方法的局限性和不确定性的认识,以及使用哪些标准和工具进行解释和可视化。
{"title":"How to promote geophysics as a standard tool for geotechnical investigations","authors":"J. Gustafsson, H. Higgs","doi":"10.1002/nsg.12313","DOIUrl":"https://doi.org/10.1002/nsg.12313","url":null,"abstract":"There are a number of success stories of how geophysical investigations have been combined with geotechnical investigations to increase the knowledge of our subsurface from around the world. However, there is still a lack of understanding between these two professions, geophysicists and geotechnical engineers. The lack of understanding mainly considers what different geophysical methods deliver in form of results and accuracy. To promote the use of geophysical investigations even more, we need to address the purpose and expectations of the geophysical investigations, the awareness of method limitations and uncertainties of the different methods, and which standards and tools for interpretation and visualization are used.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of ground geophysical methods to characterize near‐surface aquifer zones within an active mine 整合地面地球物理方法,确定在役矿井内近地表含水层区的特征
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-14 DOI: 10.1002/nsg.12314
S. Gomo, N. Mutshafa, J. Dildar, M. Manzi, J. Bourdeau, B. Brodic, I. James, G. R. J. Cooper, R.J. Durrheim
Understanding near‐surface groundwater storage, flow patterns, surface and groundwater interactions in mining areas can assist in making mining more efficient and profitable. This is especially important in opencast mines affected by water inflows that may negatively affect production and increase mining costs. We map and characterize the near‐surface aquifer zones at the opencast site of Tharisa Minerals, located in the southwestern region of the Bushveld Complex (South Africa). The main goal is to infer pit water inflow at the mine site and determine how it may be better controlled. The Bushveld Complex hosts partially connected and unconfined alluvial, shallow‐weathered and crystalline bedrock aquifers, which are often connected by small‐scale permeable zones. Seismic refraction tomography, multichannel analysis of surface waves, electrical resistivity tomography and borehole data are used to map and understand the different aquifer zones in the vicinity of the mine, as well as infer their relation to water inflow in the mine pits. The geophysical surveys map the overburden, weathered bedrock aquifer zone, and the top of the crystalline aquifer rock zone reasonably well. They reveal extensive and deep weathering, and possible high hydraulic conductivity in the vicinity of the mine. The results provide a better understanding of the mine's near‐surface environment, which could be used to implement effective and targeted dewatering techniques, thus enabling better pit inflow water control to improve mine working conditions and production.
了解矿区的近地表地下水储量、流动模式、地表水和地下水之间的相互作用,有助于提高采矿效率和利润。这对于受水流影响的露天矿尤为重要,因为水流可能会对生产造成负面影响并增加开采成本。我们对位于南非布什维尔德复合区西南部的 Tharisa 矿业公司露天矿区的近地表含水层区域进行了测绘和特征描述。主要目的是推断矿区的矿坑水流入量,并确定如何更好地控制流入量。布什维尔德复合区拥有部分相连的非承压冲积层、浅风化层和结晶基岩含水层,这些含水层通常由小规模的渗透带相连。地震折射层析成像、多通道面波分析、电阻率层析成像和钻孔数据被用来绘制和了解矿区附近的不同含水层区域,并推断它们与矿坑进水的关系。地球物理勘测对覆盖层、风化基岩含水层区和结晶含水层岩石区的顶部进行了合理的测绘。勘测结果表明,矿坑附近的风化范围广、程度深,可能具有较高的导水性。这些结果有助于更好地了解矿山的近地表环境,可用于实施有效和有针对性的脱水技术,从而更好地控制矿坑流入水,改善矿山工作条件和生产。
{"title":"Integration of ground geophysical methods to characterize near‐surface aquifer zones within an active mine","authors":"S. Gomo, N. Mutshafa, J. Dildar, M. Manzi, J. Bourdeau, B. Brodic, I. James, G. R. J. Cooper, R.J. Durrheim","doi":"10.1002/nsg.12314","DOIUrl":"https://doi.org/10.1002/nsg.12314","url":null,"abstract":"Understanding near‐surface groundwater storage, flow patterns, surface and groundwater interactions in mining areas can assist in making mining more efficient and profitable. This is especially important in opencast mines affected by water inflows that may negatively affect production and increase mining costs. We map and characterize the near‐surface aquifer zones at the opencast site of Tharisa Minerals, located in the southwestern region of the Bushveld Complex (South Africa). The main goal is to infer pit water inflow at the mine site and determine how it may be better controlled. The Bushveld Complex hosts partially connected and unconfined alluvial, shallow‐weathered and crystalline bedrock aquifers, which are often connected by small‐scale permeable zones. Seismic refraction tomography, multichannel analysis of surface waves, electrical resistivity tomography and borehole data are used to map and understand the different aquifer zones in the vicinity of the mine, as well as infer their relation to water inflow in the mine pits. The geophysical surveys map the overburden, weathered bedrock aquifer zone, and the top of the crystalline aquifer rock zone reasonably well. They reveal extensive and deep weathering, and possible high hydraulic conductivity in the vicinity of the mine. The results provide a better understanding of the mine's near‐surface environment, which could be used to implement effective and targeted dewatering techniques, thus enabling better pit inflow water control to improve mine working conditions and production.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141345004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research and application of Rayleigh wave imaging based on the Born–Jordan time‐frequency distribution 基于 Born-Jordan 时频分布的瑞利波成像研究与应用
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-03 DOI: 10.1002/nsg.12304
Xiang Min, Zhang Xuhui, Xiaoyong Yao, Zhongxiang Jiang
Currently, the horizontal resolution of Rayleigh wave exploration is low. In this study, we propose the Born–Jordan time‐frequency distribution to analyse Rayleigh waves. The seismic signal was filtered with a wavelet transform for denoising, and the Rayleigh wave was separated in the time domain. Using the Born–Jordan time‐frequency distribution, the time waveform of each frequency comprising the Rayleigh wave from every seismic channel was obtained, and the time difference of the Rayleigh wave with the same frequency was calculated, based on which the dispersion curve between the two channels was obtained. Combined with the multichannel Rayleigh wave dispersion curve, phase velocity and frequency imaging under the seismic arrangement were obtained. Applying this method to detect abnormal geological bodies in engineering investigations showed that hard geologic bodies, such as comcrete rocks, have high velocity and frequency, whereas weak ones have low velocity and frequency. This strategy facilitated the detection of fractured zones, underground goafs and obstacles during pipe‐jacking construction near the surface.
目前,瑞利波探测的水平分辨率较低。在本研究中,我们提出用 Born-Jordan 时频分布来分析瑞利波。利用小波变换对地震信号进行滤波去噪,并在时域中分离瑞利波。利用 Born-Jordan 时频分布,得到每个地震道瑞利波各频率的时间波形,并计算出相同频率瑞利波的时间差,据此得到两个地震道之间的频散曲线。结合多道瑞利波频散曲线,可获得地震排列下的相速度和频率成像。在工程勘察中应用这种方法探测异常地质体时发现,坚硬的地质体(如混凝土岩)具有较高的速度和频率,而软弱的地质体则具有较低的速度和频率。这种策略有助于探测地表附近的断裂带、地下岩浆和顶管施工过程中的障碍物。
{"title":"Research and application of Rayleigh wave imaging based on the Born–Jordan time‐frequency distribution","authors":"Xiang Min, Zhang Xuhui, Xiaoyong Yao, Zhongxiang Jiang","doi":"10.1002/nsg.12304","DOIUrl":"https://doi.org/10.1002/nsg.12304","url":null,"abstract":"Currently, the horizontal resolution of Rayleigh wave exploration is low. In this study, we propose the Born–Jordan time‐frequency distribution to analyse Rayleigh waves. The seismic signal was filtered with a wavelet transform for denoising, and the Rayleigh wave was separated in the time domain. Using the Born–Jordan time‐frequency distribution, the time waveform of each frequency comprising the Rayleigh wave from every seismic channel was obtained, and the time difference of the Rayleigh wave with the same frequency was calculated, based on which the dispersion curve between the two channels was obtained. Combined with the multichannel Rayleigh wave dispersion curve, phase velocity and frequency imaging under the seismic arrangement were obtained. Applying this method to detect abnormal geological bodies in engineering investigations showed that hard geologic bodies, such as comcrete rocks, have high velocity and frequency, whereas weak ones have low velocity and frequency. This strategy facilitated the detection of fractured zones, underground goafs and obstacles during pipe‐jacking construction near the surface.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A collocated inversion of sources and early arrival waveforms for credible tomograms: Synthetic and field data examples 对可信层析成像的源波形和早期到达波形进行同位反演:合成和现场数据实例
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-06-03 DOI: 10.1002/nsg.12312
Han Yu, Jing Li, Sherif Hanafy, Lulu Liu
Waveform inversion is theoretically a powerful tool to reconstruct subsurface structures, but a usually encountered problem is that accurate sources are very rare, causing the computation to be unstable or divergent. This challenging practical problem, although sometimes ignored and even imperceptible, can easily create discrepancies in calculated shot gathers, which will then lead to wrong residuals that will be smeared back to the gradients, hence jeopardizing the inverted tomograms. For any real dataset, every shot gather corresponds to its unique source even if some gathers can be transformed alike after data processing. To resolve this problem, we propose a collocated inversion of sources and early arrival waveforms with the two submodules executing successively. Not only can this method reconstruct a decent source wavelet that approaches the ground truth, but also it can produce credible background tomograms with optimized sources. Part of the cycle skipping problems can also be mitigated because it avoids the trial and error experiments on various sources. Numerical tests on a synthetic and a land dataset validate the effectiveness of this method. Restrictions on initial sources or starting velocity models will be relaxed, and this method can be extended to any other applications for engineering or exploration purposes.
从理论上讲,波形反演是重建地下结构的有力工具,但通常会遇到的一个问题是,精确的波源非常罕见,导致计算不稳定或发散。这个具有挑战性的实际问题虽然有时会被忽视,甚至不易察觉,但却很容易在计算的震源采集中产生偏差,进而导致错误的残差,这些残差会被抹回梯度,从而危及反演层析成像。对于任何真实数据集来说,即使某些采集数据在数据处理后会发生相同的转换,但每个采集镜头都对应于其独特的来源。为了解决这个问题,我们提出了一种源和早期到达波形的协同反演方法,两个子模块依次执行。这种方法不仅能重建接近地面实况的像样源小波,还能生成具有优化源的可信背景层析成像图。由于避免了在各种信号源上进行试验和误差实验,部分跳周期问题也可以得到缓解。对合成数据集和陆地数据集的数值测试验证了这种方法的有效性。对初始震源或起始速度模型的限制将被放宽,该方法可扩展到工程或勘探方面的任何其他应用。
{"title":"A collocated inversion of sources and early arrival waveforms for credible tomograms: Synthetic and field data examples","authors":"Han Yu, Jing Li, Sherif Hanafy, Lulu Liu","doi":"10.1002/nsg.12312","DOIUrl":"https://doi.org/10.1002/nsg.12312","url":null,"abstract":"Waveform inversion is theoretically a powerful tool to reconstruct subsurface structures, but a usually encountered problem is that accurate sources are very rare, causing the computation to be unstable or divergent. This challenging practical problem, although sometimes ignored and even imperceptible, can easily create discrepancies in calculated shot gathers, which will then lead to wrong residuals that will be smeared back to the gradients, hence jeopardizing the inverted tomograms. For any real dataset, every shot gather corresponds to its unique source even if some gathers can be transformed alike after data processing. To resolve this problem, we propose a collocated inversion of sources and early arrival waveforms with the two submodules executing successively. Not only can this method reconstruct a decent source wavelet that approaches the ground truth, but also it can produce credible background tomograms with optimized sources. Part of the cycle skipping problems can also be mitigated because it avoids the trial and error experiments on various sources. Numerical tests on a synthetic and a land dataset validate the effectiveness of this method. Restrictions on initial sources or starting velocity models will be relaxed, and this method can be extended to any other applications for engineering or exploration purposes.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical analysis of dielectric polarization effects in near‐surface earth materials in the 100 Hz–10 MHz frequency range: First interpretation paths 对 100 Hz-10 MHz 频率范围内近表面地球材料中的介电极化效应进行实验和数值分析:首次解释路径
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-05-27 DOI: 10.1002/nsg.12302
A. Tabbagh, B. Souffaché, D. Jougnot, A. Maineult, F. Rejiba, P. M. Adler, C. Schamper, J. Thiesson, C. Finco, A. Mendieta, F. Rembert, R. Guérin, C. Camerlynck
SummaryThe recent developments of electromagnetic induction and electrostatic prospection devices dedicated to critical zone surveys in both rural and urban contexts necessitate improving the interpretation of electrical properties through complementary laboratory studies. In a first interpretation step, the various experimental results obtained in the 100 Hz–10 MHz frequency range can be empirically fitted by a simple six‐term formula. It allows the reproduction of the logarithmic decrease of the real component of the effective relative permittivity and its corresponding imaginary component, the part associated with the direct current conductivity, one Cole–Cole relaxation and the real and imaginary components of the high‐frequency relative permittivity. For elucidating physical phenomena contributing to both the logarithmic decrease and the observed Cole–Cole relaxation, we first consider the Maxwell–Wagner–Sillars polarization. Using the method of moments, we establish that this continuous medium approach can reproduce a large range of relaxation characteristics. At the microscopic scale, the possible role of the rotation of the water molecules bound to solid grains is then investigated. In this case, contrary to the Maxwell–Wagner–Sillars approach, the relaxation parameters do not depend on the external medium properties.
摘要最近开发的电磁感应和静电探测设备专门用于农村和城市的临界区勘测,因此有必要通过补充实验室研究来改进电特性的解释。在第一个解释步骤中,在 100 Hz-10 MHz 频率范围内获得的各种实验结果可以通过一个简单的六项公式进行经验拟合。它可以再现有效相对介电常数实分量的对数下降及其相应的虚分量、与直流电导有关的部分、一次科尔-科尔弛豫以及高频相对介电常数的实分量和虚分量。为了阐明导致对数下降和观测到的科尔-科尔弛豫的物理现象,我们首先考虑了麦克斯韦-瓦格纳-西拉尔斯极化。利用矩法,我们确定这种连续介质方法可以再现很大范围的弛豫特性。然后,在微观尺度上研究了与固体晶粒结合的水分子旋转的可能作用。在这种情况下,与 Maxwell-Wagner-Sillars 方法相反,弛豫参数并不依赖于外部介质特性。
{"title":"Experimental and numerical analysis of dielectric polarization effects in near‐surface earth materials in the 100 Hz–10 MHz frequency range: First interpretation paths","authors":"A. Tabbagh, B. Souffaché, D. Jougnot, A. Maineult, F. Rejiba, P. M. Adler, C. Schamper, J. Thiesson, C. Finco, A. Mendieta, F. Rembert, R. Guérin, C. Camerlynck","doi":"10.1002/nsg.12302","DOIUrl":"https://doi.org/10.1002/nsg.12302","url":null,"abstract":"SummaryThe recent developments of electromagnetic induction and electrostatic prospection devices dedicated to critical zone surveys in both rural and urban contexts necessitate improving the interpretation of electrical properties through complementary laboratory studies. In a first interpretation step, the various experimental results obtained in the 100 Hz–10 MHz frequency range can be empirically fitted by a simple six‐term formula. It allows the reproduction of the logarithmic decrease of the real component of the effective relative permittivity and its corresponding imaginary component, the part associated with the direct current conductivity, one Cole–Cole relaxation and the real and imaginary components of the high‐frequency relative permittivity. For elucidating physical phenomena contributing to both the logarithmic decrease and the observed Cole–Cole relaxation, we first consider the Maxwell–Wagner–Sillars polarization. Using the method of moments, we establish that this continuous medium approach can reproduce a large range of relaxation characteristics. At the microscopic scale, the possible role of the rotation of the water molecules bound to solid grains is then investigated. In this case, contrary to the Maxwell–Wagner–Sillars approach, the relaxation parameters do not depend on the external medium properties.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel approaches of borehole‐GPR data processing and visualization – application for unexploded ordnance detection 钻孔 GPR 数据处理和可视化的新方法--应用于未爆弹药探测
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-05-20 DOI: 10.1002/nsg.12303
André Bredeck, Volkmar Schmidt, J.-P. Schmoldt
Borehole ground‐penetrating radar (BGPR) measurements allow for the detection of objects and structures in the subsurface and are often applied to the detection of unexploded ordnance (UXO). If omnidirectional borehole antennas in reflection mode are used for the measurement, the localization of UXO is only possible if the data from a multitude of boreholes are analysed. Data analysis is usually still done by manual picking of reflections. We propose novel approaches to process and visualize data from BGPR measurements in a more advanced and appealing manner. Therein, the reflected energy recorded in the radargrams is projected back to all potential reflection points in the three‐dimensional space around the boreholes. If the projection direction is considered, we obtain a vectorized energy projection image. Superposition of projected energy yields an easy‐to‐grasp indicator of possible locations of UXO and of regions of interest that ought to be investigated in more detail. These approaches have been applied to synthetic data and to data measured on a test site with buried UXO. The results show that energy projection is a useful tool for BGPR data visualization, although the result is dependent on data pre‐processing. The proposed methods provide novel representations of BGPR data based on an objective algorithm which will at least complement the conventional methods.
钻孔探地雷达(BGPR)测量可探测地下的物体和结构,通常用于探测未爆弹药(UXO)。如果使用反射模式的全向钻孔天线进行测量,则只有对来自多个钻孔的数据进行分析,才能确定未爆弹药的位置。数据分析通常仍由人工拾取反射数据完成。我们提出了新颖的方法,以更先进、更吸引人的方式处理和可视化 BGPR 测量数据。其中,雷达图中记录的反射能量被投射回钻孔周围三维空间中的所有潜在反射点。如果考虑到投影方向,我们就能得到矢量化的能量投影图像。投射能量的叠加可产生一个易于掌握的指标,显示未爆炸弹药的可能位置以及需要进行更详细调查的相关区域。这些方法已应用于合成数据和在埋有未爆弹药的试验场测量的数据。结果表明,能量投影是 BGPR 数据可视化的有用工具,尽管其结果取决于数据预处理。所提出的方法基于一种客观算法,为 BGPR 数据提供了新的表示方法,至少可以补充传统方法的不足。
{"title":"Novel approaches of borehole‐GPR data processing and visualization – application for unexploded ordnance detection","authors":"André Bredeck, Volkmar Schmidt, J.-P. Schmoldt","doi":"10.1002/nsg.12303","DOIUrl":"https://doi.org/10.1002/nsg.12303","url":null,"abstract":"Borehole ground‐penetrating radar (BGPR) measurements allow for the detection of objects and structures in the subsurface and are often applied to the detection of unexploded ordnance (UXO). If omnidirectional borehole antennas in reflection mode are used for the measurement, the localization of UXO is only possible if the data from a multitude of boreholes are analysed. Data analysis is usually still done by manual picking of reflections. We propose novel approaches to process and visualize data from BGPR measurements in a more advanced and appealing manner. Therein, the reflected energy recorded in the radargrams is projected back to all potential reflection points in the three‐dimensional space around the boreholes. If the projection direction is considered, we obtain a vectorized energy projection image. Superposition of projected energy yields an easy‐to‐grasp indicator of possible locations of UXO and of regions of interest that ought to be investigated in more detail. These approaches have been applied to synthetic data and to data measured on a test site with buried UXO. The results show that energy projection is a useful tool for BGPR data visualization, although the result is dependent on data pre‐processing. The proposed methods provide novel representations of BGPR data based on an objective algorithm which will at least complement the conventional methods.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian inversion and uncertainty analysis 贝叶斯反演和不确定性分析
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-04-22 DOI: 10.1002/nsg.12299
Nuoya Zhang, Huaifeng Sun, Dong Liu, Shangbin Liu
Quantification of non‐uniqueness and uncertainty is important for transient electromagnetism (TEM). To address this issue, we develop a trans‐dimensional Bayesian inversion schema for TEM data interpretation. The trans‐dimensional posterior probability density (PPD) offers a solution to model selection and quantifies parameter uncertainty resulting from the model selection from all possible models rather than determining a single model. We use the reversible‐jump Markov chain Monte Carlo sampler to draw ensembles of models to approximate PPD. In addition to providing reasonable model selection, we address the reliability of the inversion results for uncertainty analysis. This strategy offers reasonable guidance when interpreting the inversion results. We make the following improvements in this paper. First, in terms of algorithmic acceleration, we use the nonlinear optimization inversion results as the initial model and implement the multi‐chain parallel method. Second, we develop double factors to control the sampling step size of the proposed distribution, so that the sampling models cover the high‐probability region of the parameter space as much as possible. Finally, we provide the potential scale reduction factor‐η convergence criteria to assess the convergence of the samples and ensure the rationality of the output models. The proposed methodology is first tested on synthetic data and subsequently applied to a field dataset. The TEM inversion results show that probability inversion can provide reliable references for data interpretation through uncertainty analysis.
非唯一性和不确定性的量化对于瞬态电磁学(TEM)非常重要。为解决这一问题,我们开发了一种用于 TEM 数据解释的跨维贝叶斯反演模式。跨维后验概率密度(PPD)为模型选择提供了一种解决方案,并量化了从所有可能模型中选择模型而不是确定单一模型所产生的参数不确定性。我们使用可逆跳转马尔科夫链蒙特卡洛采样器绘制模型集合,以近似 PPD。除了提供合理的模型选择,我们还解决了不确定性分析中反演结果的可靠性问题。这一策略为解释反演结果提供了合理的指导。我们在本文中做了以下改进。首先,在算法加速方面,我们将非线性优化反演结果作为初始模型,并实现了多链并行方法。其次,我们开发了双因子来控制建议分布的采样步长,从而使采样模型尽可能覆盖参数空间的高概率区域。最后,我们提供了潜在规模缩减因子-η收敛标准来评估样本的收敛性,确保输出模型的合理性。建议的方法首先在合成数据上进行了测试,随后应用于实地数据集。TEM 反演结果表明,概率反演可通过不确定性分析为数据解释提供可靠的参考。
{"title":"Bayesian inversion and uncertainty analysis","authors":"Nuoya Zhang, Huaifeng Sun, Dong Liu, Shangbin Liu","doi":"10.1002/nsg.12299","DOIUrl":"https://doi.org/10.1002/nsg.12299","url":null,"abstract":"Quantification of non‐uniqueness and uncertainty is important for transient electromagnetism (TEM). To address this issue, we develop a trans‐dimensional Bayesian inversion schema for TEM data interpretation. The trans‐dimensional posterior probability density (PPD) offers a solution to model selection and quantifies parameter uncertainty resulting from the model selection from all possible models rather than determining a single model. We use the reversible‐jump Markov chain Monte Carlo sampler to draw ensembles of models to approximate PPD. In addition to providing reasonable model selection, we address the reliability of the inversion results for uncertainty analysis. This strategy offers reasonable guidance when interpreting the inversion results. We make the following improvements in this paper. First, in terms of algorithmic acceleration, we use the nonlinear optimization inversion results as the initial model and implement the multi‐chain parallel method. Second, we develop double factors to control the sampling step size of the proposed distribution, so that the sampling models cover the high‐probability region of the parameter space as much as possible. Finally, we provide the potential scale reduction factor‐<jats:italic>η</jats:italic> convergence criteria to assess the convergence of the samples and ensure the rationality of the output models. The proposed methodology is first tested on synthetic data and subsequently applied to a field dataset. The TEM inversion results show that probability inversion can provide reliable references for data interpretation through uncertainty analysis.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Near Surface Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1