A Novel Consumer Preference Model Based on Blockchain and Topic Similarity Clustering in Cross-Border E-Commerce

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Organizational and End User Computing Pub Date : 2023-11-01 DOI:10.4018/joeuc.333062
Pei Zhou, Yibo Zhang, Sinem Akyol
{"title":"A Novel Consumer Preference Model Based on Blockchain and Topic Similarity Clustering in Cross-Border E-Commerce","authors":"Pei Zhou, Yibo Zhang, Sinem Akyol","doi":"10.4018/joeuc.333062","DOIUrl":null,"url":null,"abstract":"Nowadays, countries in the world have frequent economic exchanges, and the scale of cross-border E-Commerce (CBEC) is getting larger and larger. CBEC refers to trading, payment, logistics, customs clearance, and other transactions. It also refers to the services between countries or regions through Internet technology and e-commerce platforms. In this article, the authors proposed a consumer preference model by blockchain and topic similarity clustering to obtain more consumer preference information. First, this article builds a blockchain-based consumer information collection system for CBEC to extract various features of consumers in CBEC. Secondly, by improving the performance of multiple characteristics of consumers, the accuracy of consumer preference prediction is improved. Finally, a method of consumer preference prediction based on topic similarity clustering is proposed to obtain consumers' purchase preference types. Experimental results show that the method can reach 84.3% of the H-mean, getting the best predictive performance and assisting CBEC by predicting consumer preferences.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"6 4","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.333062","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, countries in the world have frequent economic exchanges, and the scale of cross-border E-Commerce (CBEC) is getting larger and larger. CBEC refers to trading, payment, logistics, customs clearance, and other transactions. It also refers to the services between countries or regions through Internet technology and e-commerce platforms. In this article, the authors proposed a consumer preference model by blockchain and topic similarity clustering to obtain more consumer preference information. First, this article builds a blockchain-based consumer information collection system for CBEC to extract various features of consumers in CBEC. Secondly, by improving the performance of multiple characteristics of consumers, the accuracy of consumer preference prediction is improved. Finally, a method of consumer preference prediction based on topic similarity clustering is proposed to obtain consumers' purchase preference types. Experimental results show that the method can reach 84.3% of the H-mean, getting the best predictive performance and assisting CBEC by predicting consumer preferences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区块链和主题相似聚类的跨境电子商务消费者偏好模型
当今世界各国经济往来频繁,跨境电子商务(CBEC)的规模越来越大。CBEC是指贸易、支付、物流、通关等交易。也指通过互联网技术和电子商务平台实现的国家或地区之间的服务。在本文中,作者提出了一种基于区块链和主题相似度聚类的消费者偏好模型,以获取更多的消费者偏好信息。首先,本文构建了基于区块链的CBEC消费者信息收集系统,提取CBEC消费者的各种特征。其次,通过提高消费者多重特征的表现,提高消费者偏好预测的准确性。最后,提出了一种基于主题相似度聚类的消费者偏好预测方法,获取消费者的购买偏好类型。实验结果表明,该方法可以达到h -均值的84.3%,获得了最佳的预测性能,有助于CBEC预测消费者偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
期刊最新文献
Cross-Checking-Based Trademark Image Retrieval for Hot Company Detection E-Commerce Review Sentiment Analysis and Purchase Intention Prediction Based on Deep Learning Technology Financial Cycle With Text Information Embedding Based on LDA Measurement and Nowcasting Enhancing Innovation Management and Venture Capital Evaluation via Advanced Deep Learning Techniques Going Global in the Digital Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1