Financial Cycle With Text Information Embedding Based on LDA Measurement and Nowcasting

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Organizational and End User Computing Pub Date : 2023-12-22 DOI:10.4018/joeuc.335082
Peijin Li, Xinyi Peng, Chonghui Zhang, T. Baležentis
{"title":"Financial Cycle With Text Information Embedding Based on LDA Measurement and Nowcasting","authors":"Peijin Li, Xinyi Peng, Chonghui Zhang, T. Baležentis","doi":"10.4018/joeuc.335082","DOIUrl":null,"url":null,"abstract":"When compared to traditional indicators, text information can capture market sentiment, investor confidence, and public opinion more effectively. Meanwhile, the mixed-frequency dynamic factor model (MF-DFM) can capture current changes. In this study, the authors constructed a financial cycle measurement and nowcasting framework by incorporating text information into factors derived from MF-DFM. The findings reveal that, first, the financial cycle indicator (FCI) provides a more detailed and forward-looking perspective on major events. Second, it can serve as an effective “early warning system” by cross-referencing economic indicators. Third, financial cycles exhibit five short cycles, with contraction periods being longer than expansion phases and expansion amplitudes surpassing contractions. Lastly, the analysis suggests a potential turning point in the second half of 2023. This research represents a valuable attempt to integrate big data for more sensitive, timely, and accurate monitoring of financial dynamics.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"6 14","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.335082","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

When compared to traditional indicators, text information can capture market sentiment, investor confidence, and public opinion more effectively. Meanwhile, the mixed-frequency dynamic factor model (MF-DFM) can capture current changes. In this study, the authors constructed a financial cycle measurement and nowcasting framework by incorporating text information into factors derived from MF-DFM. The findings reveal that, first, the financial cycle indicator (FCI) provides a more detailed and forward-looking perspective on major events. Second, it can serve as an effective “early warning system” by cross-referencing economic indicators. Third, financial cycles exhibit five short cycles, with contraction periods being longer than expansion phases and expansion amplitudes surpassing contractions. Lastly, the analysis suggests a potential turning point in the second half of 2023. This research represents a valuable attempt to integrate big data for more sensitive, timely, and accurate monitoring of financial dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 LDA 测量和预测的嵌入文本信息的金融周期
与传统指标相比,文本信息能更有效地捕捉市场情绪、投资者信心和公众舆论。同时,混合频率动态因子模型(MF-DFM)可以捕捉当前的变化。在本研究中,作者通过将文本信息纳入由 MF-DFM 导出的因子,构建了一个金融周期测量和预测框架。研究结果表明:首先,金融周期指标(FCI)为重大事件提供了更详细、更具前瞻性的视角。其次,通过与经济指标的相互参照,它可以成为有效的 "预警系统"。第三,金融周期呈现出五个短周期,收缩期长于扩张期,扩张幅度超过收缩幅度。最后,分析表明 2023 年下半年可能出现转折点。这项研究是整合大数据以更灵敏、更及时、更准确地监测金融动态的宝贵尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
期刊最新文献
Cross-Checking-Based Trademark Image Retrieval for Hot Company Detection E-Commerce Review Sentiment Analysis and Purchase Intention Prediction Based on Deep Learning Technology Financial Cycle With Text Information Embedding Based on LDA Measurement and Nowcasting Enhancing Innovation Management and Venture Capital Evaluation via Advanced Deep Learning Techniques Going Global in the Digital Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1