Patient-Specific Quality Assurance in Pencil Beam Scanning by 2-Dimensional Array

Nuttida Rawiwan, Nichakan Chatchumnan, Mananchaya Vimolnoch, Sakda Kingkaew, Sornjarod Oonsiri
{"title":"Patient-Specific Quality Assurance in Pencil Beam Scanning by 2-Dimensional Array","authors":"Nuttida Rawiwan, Nichakan Chatchumnan, Mananchaya Vimolnoch, Sakda Kingkaew, Sornjarod Oonsiri","doi":"10.14338/ijpt-23-00016.1","DOIUrl":null,"url":null,"abstract":"Purpose: This study aimed to determine the characteristics of 2D ionization chamber array and the confidence limits of the gamma passing rate in pencil beam scanning proton therapy. Materials and Methods: The Varian ProBeam Compact spot-scanning system and the PTW OCTAVIUS 1500XDR array were used as a proton therapy system and detector, respectively. Our methods consisted of 2 parts: (1) the characteristics of the detector were tested and (2) patient-specific quality assurance was performed and evaluated by gamma analysis using dose-difference and distance-to-agreement criteria of 3% and 2 mm, respectively, with 123 treatment plans in head and neck, breast, chest, abdomen, and pelvic regions. Results: The PTW OCTAVIUS 1500XDR array had good reproducibility, uniformity, linearity, repetition rate, and monitor unit per spot within 0.1%, with accuracy, energy dependence, and measurement depth within 0.5%. The overall uncertainty of the PTW OCTAVIUS 1500XDR array was 2.49%. For field size and range shifter, using gamma analysis, the passing rate was 100%. The overall results of patient-specific quality assurance with the gamma evaluation were 98.9% ± 1.6% in 123 plans and confidence limit was 95.7%. Conclusion: The PTW OTAVIUS 1500XDR offered effective performance in pencil beam scanning proton therapy.","PeriodicalId":36923,"journal":{"name":"International Journal of Particle Therapy","volume":" 35","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Particle Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14338/ijpt-23-00016.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to determine the characteristics of 2D ionization chamber array and the confidence limits of the gamma passing rate in pencil beam scanning proton therapy. Materials and Methods: The Varian ProBeam Compact spot-scanning system and the PTW OCTAVIUS 1500XDR array were used as a proton therapy system and detector, respectively. Our methods consisted of 2 parts: (1) the characteristics of the detector were tested and (2) patient-specific quality assurance was performed and evaluated by gamma analysis using dose-difference and distance-to-agreement criteria of 3% and 2 mm, respectively, with 123 treatment plans in head and neck, breast, chest, abdomen, and pelvic regions. Results: The PTW OCTAVIUS 1500XDR array had good reproducibility, uniformity, linearity, repetition rate, and monitor unit per spot within 0.1%, with accuracy, energy dependence, and measurement depth within 0.5%. The overall uncertainty of the PTW OCTAVIUS 1500XDR array was 2.49%. For field size and range shifter, using gamma analysis, the passing rate was 100%. The overall results of patient-specific quality assurance with the gamma evaluation were 98.9% ± 1.6% in 123 plans and confidence limit was 95.7%. Conclusion: The PTW OTAVIUS 1500XDR offered effective performance in pencil beam scanning proton therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维阵列铅笔束扫描患者特异性质量保证
摘要:目的:研究二维电离室阵列的特性及其在铅笔束扫描质子治疗中伽马通过率的置信限。材料和方法:分别使用Varian ProBeam Compact点扫描系统和PTW OCTAVIUS 1500XDR阵列作为质子治疗系统和探测器。我们的方法由两部分组成:(1)对检测器的特性进行测试;(2)通过伽马分析,分别使用3%和2mm的剂量差和距离一致性标准,对头颈部、乳房、胸部、腹部和骨盆区域的123个治疗方案进行患者特异性质量保证和评估。结果:PTW OCTAVIUS 1500XDR阵列重现性、均匀性、线性、重复率好,监测单位/点在0.1%以内,准确度、能量依赖性、测量深度在0.5%以内。PTW OCTAVIUS 1500XDR阵列的总体不确定度为2.49%。对于场大小和范围移位器,使用伽马分析,通过率为100%。在123个方案中,患者特异性质量保证的gamma评价总体结果为98.9%±1.6%,置信限为95.7%。结论:PTW OTAVIUS 1500XDR在铅笔束扫描质子治疗中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Particle Therapy
International Journal of Particle Therapy Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
3.70
自引率
5.90%
发文量
23
审稿时长
20 weeks
期刊最新文献
Impact of COVID-19 Pandemic on Carbon-Ion Radiation Therapy in Japan: A Japanese National Registry Study. The Level of Circulating M-MDSCs as an Indicator for the Therapeutic Outcome of BNCT in End-Stage Malignant Brain Tumor Patients. Vaginal Mucosal Melanoma Cell Activation in Response to Photon or Carbon Ion Irradiation. Navigating a New Frontier: Evaluating Leadless Pacemakers in Proton Therapy. Cardiac Conduction System as an OAR in Radiation Therapy: Doses to SA/AV Nodes and Their Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1