Z. N. Hardesty-Shaw, Q. Guan, J. O. Austin-Harris, D. Blume, R. J. Lewis-Swan, Y. Liu
{"title":"Nonlinear multistate tunneling dynamics in a spinor Bose-Einstein condensate","authors":"Z. N. Hardesty-Shaw, Q. Guan, J. O. Austin-Harris, D. Blume, R. J. Lewis-Swan, Y. Liu","doi":"10.1103/physreva.108.053307","DOIUrl":null,"url":null,"abstract":"We present an experimental realization of dynamic self-trapping and nonexponential tunneling in a multistate system consisting of ultracold sodium spinor gases confined in moving optical lattices. Taking advantage of the fact that the tunneling process between different momentum states in the sodium spinor system is resolvable over a broader dynamic energy scale than previously observed in rubidium scalar gases, we demonstrate that the tunneling dynamics in the multistate system strongly depends on an interaction induced nonlinearity and is influenced by the spin degree of freedom under certain conditions. We develop a rigorous multistate tunneling model to describe the observed dynamics. Combined with our recent observation of spatially manipulated spin dynamics, these results open up prospects for alternative multistate ramps and state transfer protocols.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.108.053307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present an experimental realization of dynamic self-trapping and nonexponential tunneling in a multistate system consisting of ultracold sodium spinor gases confined in moving optical lattices. Taking advantage of the fact that the tunneling process between different momentum states in the sodium spinor system is resolvable over a broader dynamic energy scale than previously observed in rubidium scalar gases, we demonstrate that the tunneling dynamics in the multistate system strongly depends on an interaction induced nonlinearity and is influenced by the spin degree of freedom under certain conditions. We develop a rigorous multistate tunneling model to describe the observed dynamics. Combined with our recent observation of spatially manipulated spin dynamics, these results open up prospects for alternative multistate ramps and state transfer protocols.