{"title":"Investigation of the Feasibility of Increasing the Tail-grouting Zone during Mechanized Tunneling in Sandy Soils","authors":"Faezeh Barri, Hamid Chakeri, Hamed Haghkish, Milad Manafi","doi":"10.3311/ppci.23309","DOIUrl":null,"url":null,"abstract":"Nowadays, excavation in urban environments can have many risks; one of these hazards is improper tail-grouting of Earth Pressure Balance Machine (EPBM) and the consequent ground surface settlement. Failure to fill the tail space with suitable grout significantly affects the surface displacements. Injecting more grout to penetrate deeper around the tunnel will play a more effective role in reducing displacements and permeability of the soil. Therefore, experimentally investigation of the feasibility of increasing the tail-grouting zone during excavation around the tunnel space and the effect of this penetration on the amount of ground surface displacements is the main purpose of this paper. Thus, experimental tests were performed with different grout injection pressure and the effect of each of the pressure on the penetration depth of grout into the soil new laboratory model were examined. Then to study the effect of the grout penetration depth on surface settlement to determination of the adequate amount of grout injection pressure a numerical modeling of Tabriz metro line 2 by FLAC3D software were completed. For this purpose, the results of the laboratory tests (the penetration depth of grout) were used in numerical modeling. The results indicated that the amount of penetration in the implemented granulation has increased due to the increase in pressure, so doubling the pressure causes a 30% increase in grout penetration in the surrounding soil. The results of numerical studies showed that increasing the range of injection in the modeling causes a significant reduction (80 percent) in the ground surface settlement.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"46 S218","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppci.23309","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, excavation in urban environments can have many risks; one of these hazards is improper tail-grouting of Earth Pressure Balance Machine (EPBM) and the consequent ground surface settlement. Failure to fill the tail space with suitable grout significantly affects the surface displacements. Injecting more grout to penetrate deeper around the tunnel will play a more effective role in reducing displacements and permeability of the soil. Therefore, experimentally investigation of the feasibility of increasing the tail-grouting zone during excavation around the tunnel space and the effect of this penetration on the amount of ground surface displacements is the main purpose of this paper. Thus, experimental tests were performed with different grout injection pressure and the effect of each of the pressure on the penetration depth of grout into the soil new laboratory model were examined. Then to study the effect of the grout penetration depth on surface settlement to determination of the adequate amount of grout injection pressure a numerical modeling of Tabriz metro line 2 by FLAC3D software were completed. For this purpose, the results of the laboratory tests (the penetration depth of grout) were used in numerical modeling. The results indicated that the amount of penetration in the implemented granulation has increased due to the increase in pressure, so doubling the pressure causes a 30% increase in grout penetration in the surrounding soil. The results of numerical studies showed that increasing the range of injection in the modeling causes a significant reduction (80 percent) in the ground surface settlement.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.