{"title":"Multi-class classification using a new Bayesian method","authors":"Tai Vovan, Hieu Nguyenthikim, Dinh Phamtoan","doi":"10.3233/mas-221428","DOIUrl":null,"url":null,"abstract":"This paper proposes a new classification model using the Bayes method. This model not only determines the prior probability based on the k-means algorithm, builds the method for estimating the probability density function via the kernel function, but also classifies the objects to the known populations. The proposed model is described via the experiment of image classifying. In this example, we first use the Gray level co-occurrence matrix to extract the features of images, and next classify this data set based on the improved Bayesian method. In another application, we also build the classification problem for the Algerian Forest Fires data set. The outstanding advantages of this method are the adaptive ability of the kernel function, the classification for multi-class, and the reduction of computational costs. In addition, the experimental results also show the potential of the developed model.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-221428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new classification model using the Bayes method. This model not only determines the prior probability based on the k-means algorithm, builds the method for estimating the probability density function via the kernel function, but also classifies the objects to the known populations. The proposed model is described via the experiment of image classifying. In this example, we first use the Gray level co-occurrence matrix to extract the features of images, and next classify this data set based on the improved Bayesian method. In another application, we also build the classification problem for the Algerian Forest Fires data set. The outstanding advantages of this method are the adaptive ability of the kernel function, the classification for multi-class, and the reduction of computational costs. In addition, the experimental results also show the potential of the developed model.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.