Matthew S. Woodstock, Jeremy J. Kiszka, M. Rafael Ramírez-León, Tracey T. Sutton, Katja Fennel, Bin Wang, Yuying Zhang
{"title":"Cetacean-mediated vertical nitrogen transport in the oceanic realm","authors":"Matthew S. Woodstock, Jeremy J. Kiszka, M. Rafael Ramírez-León, Tracey T. Sutton, Katja Fennel, Bin Wang, Yuying Zhang","doi":"10.1002/lno.12433","DOIUrl":null,"url":null,"abstract":"<p>In natural systems, animal-mediated nutrient transport can be a major driver of primary productivity, but the role of marine megafauna such as cetaceans in mediating the transfer and recycling of nutrients has been overlooked. Here, we developed a spatially resolved, stochastic, nutrient-transport model for cetaceans in the oceanic Gulf of Mexico using species−specific foraging depths, distributions, and diets. An estimated 6.4 × 10<sup>8</sup> mmol N d<sup>−1</sup>, or 0.06 mt N yr<sup>−1</sup> ind<sup>−1</sup>, is transported to the surface from depths below 100 m by the 19 cetacean species that occur in the oceanic Gulf of Mexico; 75% of this transport occurs seaward of the continental slope, but the per area transported nitrogen is greater on the continental slope (200–1000 m) than in the ocean basin. Benthos to surface transport comprised 6.0 × 10<sup>7</sup> mmol N d<sup>−1</sup> and was much more common on the continental slope than the open basin. Compared to an existing physical-biogeochemical model, the transported nutrients add 8% N d<sup>−1</sup> to the estimated ammonium concentration above the nutricline and could add 16% N d<sup>−1</sup> to the surface ammonium concentration if expelled nutrients remain at the surface. Through feeding on diel vertical migrants, cetaceans retain an additional 2.7 × 10<sup>7</sup> mmol N d<sup>−1</sup> in the surface waters that would otherwise return to depth via downward diel vertical migration. Cetaceans contribute to nutrient movements and recycling in the oceanic Gulf of Mexico, and may provide one of the few allochthonous sources of nutrients for primary producers in oligotrophic ecosystems.</p>","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"68 11","pages":"2445-2460"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lno.12433","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In natural systems, animal-mediated nutrient transport can be a major driver of primary productivity, but the role of marine megafauna such as cetaceans in mediating the transfer and recycling of nutrients has been overlooked. Here, we developed a spatially resolved, stochastic, nutrient-transport model for cetaceans in the oceanic Gulf of Mexico using species−specific foraging depths, distributions, and diets. An estimated 6.4 × 108 mmol N d−1, or 0.06 mt N yr−1 ind−1, is transported to the surface from depths below 100 m by the 19 cetacean species that occur in the oceanic Gulf of Mexico; 75% of this transport occurs seaward of the continental slope, but the per area transported nitrogen is greater on the continental slope (200–1000 m) than in the ocean basin. Benthos to surface transport comprised 6.0 × 107 mmol N d−1 and was much more common on the continental slope than the open basin. Compared to an existing physical-biogeochemical model, the transported nutrients add 8% N d−1 to the estimated ammonium concentration above the nutricline and could add 16% N d−1 to the surface ammonium concentration if expelled nutrients remain at the surface. Through feeding on diel vertical migrants, cetaceans retain an additional 2.7 × 107 mmol N d−1 in the surface waters that would otherwise return to depth via downward diel vertical migration. Cetaceans contribute to nutrient movements and recycling in the oceanic Gulf of Mexico, and may provide one of the few allochthonous sources of nutrients for primary producers in oligotrophic ecosystems.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.