Anika Große, Daniel Graeber, Patrick Fink, Alexander J. Reisinger, Norbert Kamjunke, Michele Meyer, Maja Ilić, Dietrich Borchardt, Nuria Perujo
Nutrient dynamics in headwater streams are governed by benthic and hyporheic biofilms, with carbon (C) : nitrogen (N) : phosphorus (P) ratios driving the heterotrophic microbial biofilm development through nutrient limitation. Furthermore, heterotrophic responses to changes in C : N : P ratios are probably modulated by autotrophic responses to light and C : N : P ratios, which modify the amount and composition of photosynthetic exudates and increase competition for nutrients. Effects on functional properties like the use of organic compounds by the heterotrophic biofilm community are largely unknown. We conducted a stream mesocosm experiment with a factorial design with different C : N : P ratios and light availability levels to test direct and indirect effects on heterotrophic biofilm functioning via community‐level physiological profiles in benthic and hyporheic biofilms. When inducing a resource C : N : P ratio closer to heterotrophic microbial biomass C : N : P ratios, we found an increased functional diversity of metabolized substrates, especially in hyporheic biofilms. Furthermore, this alteration shaped substrate preferences toward less P‐containing substrates and more N‐containing substrates in early‐stage biofilms. Despite the absence of a direct impact of light on hyporheic biofilms, we detected a propagation of a benthic autotrophic effect into hyporheic biofilms. Light availability induced effects on hyporheic bacterial density and the use of phenolic compounds, amino acids, and carbohydrates. In benthic biofilms, only the use of carbohydrates was affected by light. These results emphasize the significant indirect effects of benthic autotrophs on the functionality of hyporheic microbial heterotrophs and suggest consequences of human impacts, such as nutrient inputs and clear‐cutting, on stream nutrient cycling.
{"title":"Contrasting functional responses of benthic and hyporheic stream biofilms to light availability and macronutrient stoichiometry","authors":"Anika Große, Daniel Graeber, Patrick Fink, Alexander J. Reisinger, Norbert Kamjunke, Michele Meyer, Maja Ilić, Dietrich Borchardt, Nuria Perujo","doi":"10.1002/lno.70069","DOIUrl":"https://doi.org/10.1002/lno.70069","url":null,"abstract":"Nutrient dynamics in headwater streams are governed by benthic and hyporheic biofilms, with carbon (C) : nitrogen (N) : phosphorus (P) ratios driving the heterotrophic microbial biofilm development through nutrient limitation. Furthermore, heterotrophic responses to changes in C : N : P ratios are probably modulated by autotrophic responses to light and C : N : P ratios, which modify the amount and composition of photosynthetic exudates and increase competition for nutrients. Effects on functional properties like the use of organic compounds by the heterotrophic biofilm community are largely unknown. We conducted a stream mesocosm experiment with a factorial design with different C : N : P ratios and light availability levels to test direct and indirect effects on heterotrophic biofilm functioning via community‐level physiological profiles in benthic and hyporheic biofilms. When inducing a resource C : N : P ratio closer to heterotrophic microbial biomass C : N : P ratios, we found an increased functional diversity of metabolized substrates, especially in hyporheic biofilms. Furthermore, this alteration shaped substrate preferences toward less P‐containing substrates and more N‐containing substrates in early‐stage biofilms. Despite the absence of a direct impact of light on hyporheic biofilms, we detected a propagation of a benthic autotrophic effect into hyporheic biofilms. Light availability induced effects on hyporheic bacterial density and the use of phenolic compounds, amino acids, and carbohydrates. In benthic biofilms, only the use of carbohydrates was affected by light. These results emphasize the significant indirect effects of benthic autotrophs on the functionality of hyporheic microbial heterotrophs and suggest consequences of human impacts, such as nutrient inputs and clear‐cutting, on stream nutrient cycling.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"44 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143876143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to “A 7‐yr spatial time series resolves the island mass effect and associated shifts in picocyanobacteria abundances near O'ahu, Hawai'i”","authors":"","doi":"10.1002/lno.12737","DOIUrl":"https://doi.org/10.1002/lno.12737","url":null,"abstract":"","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"3 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143876146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to “Aluminum increases net carbon fixation by marine diatoms and decreases their decomposition: Evidence for the iron–aluminum hypothesis”","authors":"","doi":"10.1002/lno.12377","DOIUrl":"https://doi.org/10.1002/lno.12377","url":null,"abstract":"","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"30 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143876144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbes in the sea surface microlayer (SML) are key to connecting the ocean and the atmosphere, affecting the exchange of matter, momentum, and heat at the interface. However, their sources have never been quantified systematically. Seawater has long been deemed their major source, whereas atmospheric deposition is regarded as trivial or merely providing additional nutrients. Here, combining atmospheric observations and quantitative budget analyses, we show that during the Indonesian peatland wildfire events the smoke can directly deposit abundant microbes into the SML, which can be comparable to the estimated supply from seawater and potentially diversify the microbial community of the SML. This land–air–ocean interaction is relevant for global climate, as it may induce previously unknown effects on the air–sea interactions, especially in an increasingly warming future with more intensifying wildfires.
{"title":"Mass deposition of microbes from wildfire smoke to the sea surface microlayer","authors":"Siyao Yue, Yafang Cheng, Lishan Zheng, Senchao Lai, Shan Wang, Tianli Song, Linjie Li, Ping Li, Jialei Zhu, Meng Li, Lianfang Wei, Chaoqun Ma, Rui Jin, Yingyi Zhang, Yele Sun, Zifa Wang, Kimitaka Kawamura, Cong‐Qiang Liu, Hang Su, Meinrat O. Andreae, Pingqing Fu","doi":"10.1002/lno.70078","DOIUrl":"https://doi.org/10.1002/lno.70078","url":null,"abstract":"Microbes in the sea surface microlayer (SML) are key to connecting the ocean and the atmosphere, affecting the exchange of matter, momentum, and heat at the interface. However, their sources have never been quantified systematically. Seawater has long been deemed their major source, whereas atmospheric deposition is regarded as trivial or merely providing additional nutrients. Here, combining atmospheric observations and quantitative budget analyses, we show that during the Indonesian peatland wildfire events the smoke can directly deposit abundant microbes into the SML, which can be comparable to the estimated supply from seawater and potentially diversify the microbial community of the SML. This land–air–ocean interaction is relevant for global climate, as it may induce previously unknown effects on the air–sea interactions, especially in an increasingly warming future with more intensifying wildfires.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"15 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143876147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information & Masthead","authors":"","doi":"10.1002/lno.70066","DOIUrl":"https://doi.org/10.1002/lno.70066","url":null,"abstract":"","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"70 4","pages":"i"},"PeriodicalIF":3.8,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.70066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143875500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information & Members form","authors":"","doi":"10.1002/lno.70068","DOIUrl":"https://doi.org/10.1002/lno.70068","url":null,"abstract":"","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"70 4","pages":"iv"},"PeriodicalIF":3.8,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.70068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143875504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information & Copyright","authors":"","doi":"10.1002/lno.70065","DOIUrl":"https://doi.org/10.1002/lno.70065","url":null,"abstract":"","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"70 4","pages":"ii"},"PeriodicalIF":3.8,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.70065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143875502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information & TOC","authors":"","doi":"10.1002/lno.70067","DOIUrl":"https://doi.org/10.1002/lno.70067","url":null,"abstract":"","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"70 4","pages":"iii"},"PeriodicalIF":3.8,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.70067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143875503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susse Wegeberg, Jozef Wiktor, Jannie Fries Linnebjerg, Ole Geertz‐Hansen
Present study is the first quantitative and coherent presentation of the submerged marine vegetation along the Greenland east coast, from 65.5°N to 76.8°N, based on data obtained from 286 underwater video transects. Based on cluster analysis, four different marine submerged vegetation community figurations were identified: a southern and deeper kelp forest including Laminaria solidungula and Agarum clathratum, the marine vegetation along the Blosseville coast, seaweed meadows characterized by, e.g., submerged Fucus distichus, and high‐arctic kelp forest. The habitat figurations were related to and potentially explained by drivers considered to be key for their spatial distribution. The drivers considered were latitude as a proxy for light conditions with stronger seasonality and receding light conditions toward the north, suitable substratum for the marine vegetation to establish and grow, and the sea ice conditions with respect to light attenuation and scouring. Two of the vegetation types were explained by latitude, whereas the two vegetation types identified for the mid segment of the surveyed coastline were considered to be more correlated to local/regional conditions such as the presence of dynamic sea ice and glaciers as well as smaller‐sized hard substratum. Some degree of marine vegetation/kelp forest pauperization was observed with increasing latitude, expressed as a decrease in coverage and depth distribution. The vegetation belt was declining from a depth of 34 to 18 m within the northward latitudinal gradient surveyed, although for some species, no change in species‐specific maximal depth limits could be observed.
{"title":"Latitude, sea ice, and glaciers are important drivers of submerged vegetation distributions in the Arctic coastal waters along east Greenland","authors":"Susse Wegeberg, Jozef Wiktor, Jannie Fries Linnebjerg, Ole Geertz‐Hansen","doi":"10.1002/lno.70056","DOIUrl":"https://doi.org/10.1002/lno.70056","url":null,"abstract":"Present study is the first quantitative and coherent presentation of the submerged marine vegetation along the Greenland east coast, from 65.5°N to 76.8°N, based on data obtained from 286 underwater video transects. Based on cluster analysis, four different marine submerged vegetation community figurations were identified: a southern and deeper kelp forest including <jats:italic>Laminaria solidungula</jats:italic> and <jats:italic>Agarum clathratum</jats:italic>, the marine vegetation along the Blosseville coast, seaweed meadows characterized by, e.g., submerged <jats:italic>Fucus distichus</jats:italic>, and high‐arctic kelp forest. The habitat figurations were related to and potentially explained by drivers considered to be key for their spatial distribution. The drivers considered were latitude as a proxy for light conditions with stronger seasonality and receding light conditions toward the north, suitable substratum for the marine vegetation to establish and grow, and the sea ice conditions with respect to light attenuation and scouring. Two of the vegetation types were explained by latitude, whereas the two vegetation types identified for the mid segment of the surveyed coastline were considered to be more correlated to local/regional conditions such as the presence of dynamic sea ice and glaciers as well as smaller‐sized hard substratum. Some degree of marine vegetation/kelp forest pauperization was observed with increasing latitude, expressed as a decrease in coverage and depth distribution. The vegetation belt was declining from a depth of 34 to 18 m within the northward latitudinal gradient surveyed, although for some species, no change in species‐specific maximal depth limits could be observed.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"7 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143866926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steeve Comeau, Werner Eckert, Dominique Lefevre, Julia C. Mullarney, Kevin C. Rose, Elisa Schaum, Heidi M. Sosik, Yuichiro Takeshita
{"title":"Autonomous instrumentation and big data: New windows, knowledge, and breakthroughs in the aquatic sciences","authors":"Steeve Comeau, Werner Eckert, Dominique Lefevre, Julia C. Mullarney, Kevin C. Rose, Elisa Schaum, Heidi M. Sosik, Yuichiro Takeshita","doi":"10.1002/lno.70040","DOIUrl":"https://doi.org/10.1002/lno.70040","url":null,"abstract":"","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"6 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143866928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}