Effect of granular activated carbon adsorption on mitigating microfiltration membrane fouling by algal organic matter

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-10-06 DOI:10.2166/aqua.2023.127
Ziming Zhao, Qingsheng He, Jingfu Fan, Wenjun Sun, Madhumita B. Ray
{"title":"Effect of granular activated carbon adsorption on mitigating microfiltration membrane fouling by algal organic matter","authors":"Ziming Zhao, Qingsheng He, Jingfu Fan, Wenjun Sun, Madhumita B. Ray","doi":"10.2166/aqua.2023.127","DOIUrl":null,"url":null,"abstract":"Abstract Algal blooms can seriously affect the operation of water treatment processes including low-pressure (micro- and ultrafiltration) and high-pressure (nanofiltration and reverse osmosis) membranes mainly due to the accumulation of algae-derived organic matter (AOM). This study investigated the effect of granular activated carbon (GAC) pretreatment on PVDF microfiltration performance for the removal of AOM. Dissolved organic matter (DOM) solution of commercial humic acid, extra- and intracellular organic matter from two species of algae, and Cyanobacteria were used for the investigation of the fouling potential of the membrane. A comparison study of different DOM removal and fouling behaviors of microfiltration (MF) after GAC adsorption as pretreatment was evaluated under variable GAC dosage and solution pH. Almost 15–20% improvement in flux and decline in irreversible fouling occurred due to the pretreatment using 1.0 g/L of GAC for an hour. The intracellular material caused higher membrane fouling than humic acid due to the hydrophilic nature of the AOM. Membrane fouling and decline in flux increased with increasing pH in the range of 5.0–8.0. The comparison results might help to provide insights into the real challenge of dealing with the treatment of algal-laden water.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Algal blooms can seriously affect the operation of water treatment processes including low-pressure (micro- and ultrafiltration) and high-pressure (nanofiltration and reverse osmosis) membranes mainly due to the accumulation of algae-derived organic matter (AOM). This study investigated the effect of granular activated carbon (GAC) pretreatment on PVDF microfiltration performance for the removal of AOM. Dissolved organic matter (DOM) solution of commercial humic acid, extra- and intracellular organic matter from two species of algae, and Cyanobacteria were used for the investigation of the fouling potential of the membrane. A comparison study of different DOM removal and fouling behaviors of microfiltration (MF) after GAC adsorption as pretreatment was evaluated under variable GAC dosage and solution pH. Almost 15–20% improvement in flux and decline in irreversible fouling occurred due to the pretreatment using 1.0 g/L of GAC for an hour. The intracellular material caused higher membrane fouling than humic acid due to the hydrophilic nature of the AOM. Membrane fouling and decline in flux increased with increasing pH in the range of 5.0–8.0. The comparison results might help to provide insights into the real challenge of dealing with the treatment of algal-laden water.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颗粒活性炭吸附对微滤膜污染的抑制作用
藻华会严重影响低压(微滤和超滤)和高压(纳滤和反渗透)水处理工艺的运行,这主要是由于藻源有机物(AOM)的积累。研究了颗粒活性炭(GAC)预处理对PVDF微滤去除AOM性能的影响。利用商业腐植酸溶解有机物(DOM)溶液、两种藻类的胞外和胞内有机物以及蓝藻对膜的污染电位进行了研究。在不同的GAC用量和溶液ph条件下,对GAC吸附后微滤(MF)的不同DOM去除和污染行为进行了比较研究。使用1.0 g/L的GAC预处理1小时,通量提高了15-20%,不可逆污染降低了。由于AOM的亲水性,胞内物质比腐植酸造成更高的膜污染。在5.0 ~ 8.0范围内,随着pH值的增加,膜污染和通量的下降幅度增大。比较结果可能有助于提供对处理含藻水的真正挑战的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1