Gaurav Madan, Ada Gjermundsen, Silje C. Iversen, Joseph H. LaCasce
{"title":"The weakening AMOC under extreme climate change","authors":"Gaurav Madan, Ada Gjermundsen, Silje C. Iversen, Joseph H. LaCasce","doi":"10.1007/s00382-023-06957-7","DOIUrl":null,"url":null,"abstract":"Abstract Changes in the Atlantic Meridional Overturning Circulation (AMOC) in the quadrupled CO 2 experiments conducted under the sixth Coupled Model Intercomparison Project (CMIP6) are examined. Increased CO 2 triggers extensive Arctic warming, causing widespread melting of sea ice. The resulting freshwater spreads southward, first from the Labrador Sea and then the Nordic Seas, and proceeds along the eastern coast of North America. The freshwater enters the subpolar gyre north of the separated Gulf Stream, the North Atlantic Current. This decreases the density gradient across the current and the current weakens in response, reducing the inflow to the deepwater production regions. The AMOC cell weakens in tandem, first near the North Atlantic Current and then spreading to higher and lower latitudes. This contrasts with the common perception that freshwater caps the convection regions, stifling deepwater production; rather, it is the inflow to the subpolar gyre that is suppressed. Changes in surface temperature have a much weaker effect, and there are no consistent changes in local or remote wind forcing among the models. Thus an increase in freshwater discharge, primarily from the Labrador Sea, is the precursor to AMOC weakening in these simulations.","PeriodicalId":10165,"journal":{"name":"Climate Dynamics","volume":"1 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00382-023-06957-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Changes in the Atlantic Meridional Overturning Circulation (AMOC) in the quadrupled CO 2 experiments conducted under the sixth Coupled Model Intercomparison Project (CMIP6) are examined. Increased CO 2 triggers extensive Arctic warming, causing widespread melting of sea ice. The resulting freshwater spreads southward, first from the Labrador Sea and then the Nordic Seas, and proceeds along the eastern coast of North America. The freshwater enters the subpolar gyre north of the separated Gulf Stream, the North Atlantic Current. This decreases the density gradient across the current and the current weakens in response, reducing the inflow to the deepwater production regions. The AMOC cell weakens in tandem, first near the North Atlantic Current and then spreading to higher and lower latitudes. This contrasts with the common perception that freshwater caps the convection regions, stifling deepwater production; rather, it is the inflow to the subpolar gyre that is suppressed. Changes in surface temperature have a much weaker effect, and there are no consistent changes in local or remote wind forcing among the models. Thus an increase in freshwater discharge, primarily from the Labrador Sea, is the precursor to AMOC weakening in these simulations.
期刊介绍:
The international journal Climate Dynamics provides for the publication of high-quality research on all aspects of the dynamics of the global climate system.
Coverage includes original paleoclimatic, diagnostic, analytical and numerical modeling research on the structure and behavior of the atmosphere, oceans, cryosphere, biomass and land surface as interacting components of the dynamics of global climate. Contributions are focused on selected aspects of climate dynamics on particular scales of space or time.
The journal also publishes reviews and papers emphasizing an integrated view of the physical and biogeochemical processes governing climate and climate change.