AI for space traffic management

IF 1 Q3 ENGINEERING, AEROSPACE Journal of Space Safety Engineering Pub Date : 2023-09-16 DOI:10.1016/j.jsse.2023.08.007
Chiara Manfletti , Marta Guimarães , Claudia Soares
{"title":"AI for space traffic management","authors":"Chiara Manfletti ,&nbsp;Marta Guimarães ,&nbsp;Claudia Soares","doi":"10.1016/j.jsse.2023.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Morgan Stanley forecasts the space industry to top 1 trillion dollars by 2040. Of these 1 trillion dollars, 1.5 billion dollars are expected to be the contribution of the space situational market alone.</p><p><span>Satellite operators are already paying the price of space debris. Current approaches for collision avoidance and space traffic management face serious challenges, mainly: (1) Insufficient data and endangered </span>autonomy of action in space; (2) A high number of false alerts and a large uncertainty; (3) Lack of scalability and automation for an increasing number of assets.</p><p>This paper explores the potential of AI for Space and presents some of the advances made by Neuraspace in Space Traffic Management, including the analysis of conjunction data messages (CDMs), predicting uncertainties, and risk classification, and the economic benefits of new approaches.</p><p>Further, the paper addresses the need for a more active role of the private sector and an evolution of the role of the public sector to foster space sustainability and support the growth companies leading this effort.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":"10 4","pages":"Pages 495-504"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896723000897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Morgan Stanley forecasts the space industry to top 1 trillion dollars by 2040. Of these 1 trillion dollars, 1.5 billion dollars are expected to be the contribution of the space situational market alone.

Satellite operators are already paying the price of space debris. Current approaches for collision avoidance and space traffic management face serious challenges, mainly: (1) Insufficient data and endangered autonomy of action in space; (2) A high number of false alerts and a large uncertainty; (3) Lack of scalability and automation for an increasing number of assets.

This paper explores the potential of AI for Space and presents some of the advances made by Neuraspace in Space Traffic Management, including the analysis of conjunction data messages (CDMs), predicting uncertainties, and risk classification, and the economic benefits of new approaches.

Further, the paper addresses the need for a more active role of the private sector and an evolution of the role of the public sector to foster space sustainability and support the growth companies leading this effort.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于空间交通管理的人工智能
摩根士丹利预测,到2040年,太空产业的规模将超过1万亿美元。在这1万亿美元中,预计仅空间态势市场就贡献了15亿美元。卫星运营商已经在为太空碎片付出代价。当前的空间交通管理方法面临着严峻的挑战,主要表现在:(1)数据不足,空间行动自主性受到威胁;(2)虚警数量多,不确定性大;(3)对越来越多的资产缺乏可扩展性和自动化。本文探讨了空间人工智能的潜力,并介绍了神经空间在空间交通管理方面取得的一些进展,包括连接数据信息(cdm)分析、预测不确定性、风险分类以及新方法的经济效益。此外,该文件还讨论了私营部门发挥更积极作用的必要性和公共部门作用的演变,以促进空间可持续性并支持领导这一努力的成长型公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Space Safety Engineering
Journal of Space Safety Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.50
自引率
0.00%
发文量
80
期刊最新文献
Editorial Board An economic indicator of the orbital debris environment Adaptive relative orbit control considering laser ablation uncertainty Post mission disposal of Megha-Tropiques-1 through controlled atmospheric Re-entry to be published in: The journal of space safety engineering Development of ballistic limit equations in support of the Mars sample return mission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1