Perturbation-driven echo-like superfluorescence in perovskite superlattices

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2023-10-06 DOI:10.1117/1.ap.5.5.055001
Qiangqiang Wang, Jiqing Tan, Qi Jie, Hongxing Dong, Yongsheng Hu, Chun Zhou, Saifeng Zhang, Yichi Zhong, Shuang Liang, Long Zhang, Wei Xie, Hongxing Xu
{"title":"Perturbation-driven echo-like superfluorescence in perovskite superlattices","authors":"Qiangqiang Wang, Jiqing Tan, Qi Jie, Hongxing Dong, Yongsheng Hu, Chun Zhou, Saifeng Zhang, Yichi Zhong, Shuang Liang, Long Zhang, Wei Xie, Hongxing Xu","doi":"10.1117/1.ap.5.5.055001","DOIUrl":null,"url":null,"abstract":"The collective response of macroscopic quantum states under perturbation is widely used to study quantum correlations and cooperative properties, such as defect-induced quantum vortices in Bose–Einstein condensates and the non-destructive scattering of impurities in superfluids. Superfluorescence (SF), as a collective effect rooted in dipole–dipole cooperation through virtual photon exchange, leads to the macroscopic dipole moment (MDM) in high-density dipole ensembles. However, the perturbation response of the MDM in SF systems remains unknown. Echo-like behavior is observed in a cooperative exciton ensemble under a controllable perturbation, corresponding to an initial collapse followed by a revival of the MDM. Such a dynamic response could refer to a phase transition between the macroscopic coherence regime and the incoherent classical state on a time scale of 10 ps. The echo-like behavior is absent above 100 K due to the instability of MDM in a strongly dephased exciton ensemble. Experimentally, the MDM response to perturbations is shown to be controlled by the amplitude and injection time of the perturbations.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"121 1","pages":"0"},"PeriodicalIF":20.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.ap.5.5.055001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The collective response of macroscopic quantum states under perturbation is widely used to study quantum correlations and cooperative properties, such as defect-induced quantum vortices in Bose–Einstein condensates and the non-destructive scattering of impurities in superfluids. Superfluorescence (SF), as a collective effect rooted in dipole–dipole cooperation through virtual photon exchange, leads to the macroscopic dipole moment (MDM) in high-density dipole ensembles. However, the perturbation response of the MDM in SF systems remains unknown. Echo-like behavior is observed in a cooperative exciton ensemble under a controllable perturbation, corresponding to an initial collapse followed by a revival of the MDM. Such a dynamic response could refer to a phase transition between the macroscopic coherence regime and the incoherent classical state on a time scale of 10 ps. The echo-like behavior is absent above 100 K due to the instability of MDM in a strongly dephased exciton ensemble. Experimentally, the MDM response to perturbations is shown to be controlled by the amplitude and injection time of the perturbations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙钛矿超晶格中微扰驱动的回声样超荧光
宏观量子态在微扰下的集体响应被广泛用于研究量子相关和协同性质,如玻色-爱因斯坦凝聚体中缺陷诱导的量子涡和超流体中杂质的无损散射。超荧光(Superfluorescence, SF)是通过虚拟光子交换产生的偶极子-偶极子协同作用的集体效应,导致高密度偶极子系综中的宏观偶极矩(MDM)。然而,MDM在SF系统中的扰动响应仍然是未知的。在可控扰动下,在协同激子系综中观察到类似回声的行为,对应于MDM的初始坍缩和恢复。这种动态响应可能是指在10 ps的时间尺度上宏观相干态和非相干经典态之间的相变。在100 K以上,由于MDM在强脱相激子系综中的不稳定性,不存在类似回声的行为。实验表明,MDM对扰动的响应受扰动幅度和注入时间的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Organic near-infrared optoelectronic materials and devices: an overview Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces Quantum dots for optoelectronics Surfing the metasurface: a conversation with Din Ping Tsai Nonlinear chiral metaphotonics: a perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1