首页 > 最新文献

Advanced Photonics最新文献

英文 中文
Nested deep transfer learning for modeling of multilayer thin films. 多层薄膜模型的嵌套深度迁移学习。
IF 18.8 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-10-01 Epub Date: 2024-10-08 DOI: 10.1117/1.ap.6.5.056006
Rohit Unni, Kan Yao, Yuebing Zheng

Machine learning techniques have gained popularity in nanophotonics research, being applied to predict optical properties, and inversely design structures. However, one limitation is the cost of acquiring training data, as complex structures require time-consuming simulations. To address this, researchers have explored using transfer learning, where pre-trained networks can facilitate convergence with fewer data for related tasks, but application to more difficult tasks is still limited. In this work, a nested transfer learning approach is proposed, training models to predict structures of increasing complexity, with transfer between each model and few data used at each step. This allows modeling thin film stacks with higher optical complexity than previously reported. For the forward model, a bidirectional recurrent neural network is utilized, which excels in modeling sequential inputs. For the inverse model, a convolutional mixture density network is employed. In both cases, a relaxed choice of materials at each layer is introduced, making the approach more versatile. The final nested transfer models display high accuracy in retrieving complex arbitrary spectra and matching idealized spectra for specific applications-focused cases such as selective thermal emitters, while keeping data requirements modest. Our nested transfer learning approach represents a promising avenue for addressing data acquisition challenges.

机器学习技术在纳米光子学研究中越来越受欢迎,被应用于预测光学性质和逆向设计结构。然而,一个限制是获取训练数据的成本,因为复杂的结构需要耗时的模拟。为了解决这个问题,研究人员已经探索了使用迁移学习,其中预训练的网络可以用更少的数据促进相关任务的收敛,但应用于更困难的任务仍然有限。在这项工作中,提出了一种嵌套迁移学习方法,训练模型来预测越来越复杂的结构,每个模型之间都有迁移,每一步使用的数据很少。这使得建模具有比以前报道的更高的光学复杂性的薄膜堆栈成为可能。对于正演模型,采用双向递归神经网络,该网络在序列输入建模方面具有优势。对于逆模型,采用卷积混合密度网络。在这两种情况下,每一层的材料选择都是宽松的,使方法更加通用。最终的嵌套传递模型在检索复杂的任意光谱和匹配特定应用的理想光谱方面显示出很高的准确性,同时保持数据要求适中。我们的嵌套迁移学习方法代表了解决数据获取挑战的有前途的途径。
{"title":"Nested deep transfer learning for modeling of multilayer thin films.","authors":"Rohit Unni, Kan Yao, Yuebing Zheng","doi":"10.1117/1.ap.6.5.056006","DOIUrl":"https://doi.org/10.1117/1.ap.6.5.056006","url":null,"abstract":"<p><p>Machine learning techniques have gained popularity in nanophotonics research, being applied to predict optical properties, and inversely design structures. However, one limitation is the cost of acquiring training data, as complex structures require time-consuming simulations. To address this, researchers have explored using transfer learning, where pre-trained networks can facilitate convergence with fewer data for related tasks, but application to more difficult tasks is still limited. In this work, a nested transfer learning approach is proposed, training models to predict structures of increasing complexity, with transfer between each model and few data used at each step. This allows modeling thin film stacks with higher optical complexity than previously reported. For the forward model, a bidirectional recurrent neural network is utilized, which excels in modeling sequential inputs. For the inverse model, a convolutional mixture density network is employed. In both cases, a relaxed choice of materials at each layer is introduced, making the approach more versatile. The final nested transfer models display high accuracy in retrieving complex arbitrary spectra and matching idealized spectra for specific applications-focused cases such as selective thermal emitters, while keeping data requirements modest. Our nested transfer learning approach represents a promising avenue for addressing data acquisition challenges.</p>","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"6 5","pages":""},"PeriodicalIF":18.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144972180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic near-infrared optoelectronic materials and devices: an overview 有机近红外光电材料与器件:概述
IF 17.3 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-01-08 DOI: 10.1117/1.ap.6.1.014001
Zong-Lu Che, Chang-Cun Yan, Xuedong Wang, Liangsheng Liao
{"title":"Organic near-infrared optoelectronic materials and devices: an overview","authors":"Zong-Lu Che, Chang-Cun Yan, Xuedong Wang, Liangsheng Liao","doi":"10.1117/1.ap.6.1.014001","DOIUrl":"https://doi.org/10.1117/1.ap.6.1.014001","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"32 9","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces 硅超表面非局部共振的巨型光诱导反射率调制
IF 17.3 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-12-09 DOI: 10.1117/1.ap.5.6.066006
A. Tognazzi, P. Franceschini, O. Sergaeva, L. Carletti, Ivano Alessandri, G. Finco, Osamu Takayama, R. Malureanu, Andrei V. Lavrinenko, Alfonso C. Cino, Domenico de Ceglia, Costantino De Angelis
{"title":"Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces","authors":"A. Tognazzi, P. Franceschini, O. Sergaeva, L. Carletti, Ivano Alessandri, G. Finco, Osamu Takayama, R. Malureanu, Andrei V. Lavrinenko, Alfonso C. Cino, Domenico de Ceglia, Costantino De Angelis","doi":"10.1117/1.ap.5.6.066006","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.066006","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"2 12","pages":""},"PeriodicalIF":17.3,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138585960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum dots for optoelectronics 用于光电子学的量子点
IF 17.3 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-12-06 DOI: 10.1117/1.ap.5.6.060503
Hancong Li, Qiming Peng, Xiulai Xu, Jianpu Wang
{"title":"Quantum dots for optoelectronics","authors":"Hancong Li, Qiming Peng, Xiulai Xu, Jianpu Wang","doi":"10.1117/1.ap.5.6.060503","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.060503","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"37 26","pages":""},"PeriodicalIF":17.3,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surfing the metasurface: a conversation with Din Ping Tsai 冲浪元面:与 Din Ping Tsai 的对话
IF 17.3 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-11-21 DOI: 10.1117/1.ap.5.6.060502
Guoqing Chang
{"title":"Surfing the metasurface: a conversation with Din Ping Tsai","authors":"Guoqing Chang","doi":"10.1117/1.ap.5.6.060502","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.060502","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"36 5","pages":""},"PeriodicalIF":17.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139251116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear chiral metaphotonics: a perspective 非线性手性变形学:一个视角
1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-11-08 DOI: 10.1117/1.ap.5.6.064001
Kirill Koshelev, Pavel Tonkaev, Yuri Kivshar
We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response. We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces, including surface plasmon resonances, Mie resonances, lattice-guided modes, and bound states in the continuum. We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.
本文综述了为实现强非线性热响应而设计的光子结构的物理特性及其应用。我们非常关注最近在金属和介电亚波长结构和超表面中利用不同类型的光学共振的策略,包括表面等离子体共振、Mie共振、晶格引导模式和连续体中的束缚态。我们总结了早期的结果,并讨论了实现大圆二色性与高效率非线性谐波产生相结合的最新进展。
{"title":"Nonlinear chiral metaphotonics: a perspective","authors":"Kirill Koshelev, Pavel Tonkaev, Yuri Kivshar","doi":"10.1117/1.ap.5.6.064001","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.064001","url":null,"abstract":"We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response. We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces, including surface plasmon resonances, Mie resonances, lattice-guided modes, and bound states in the continuum. We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"32 44","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shining the shortest flashes of light on the secret life of electrons 用最短的闪光照射电子的秘密生命
1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-11-06 DOI: 10.1117/1.ap.5.6.060501
Margarita Khokhlova, Emilio Pisanty, Amelle Zaïr
The Nobel Prize in Physics 2023 was awarded to Pierre Agostini, Ferenc Krausz and Anne L’Huillier for “experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter.” We review the history of attosecond physics, recount the laureates’ achievements and their place within the field, discuss the breakthroughs made possible by the creation of attosecond pulses, and look to the future advances in attoscience.
2023年诺贝尔物理学奖授予皮埃尔·阿戈斯蒂尼、费伦茨·克劳斯和安妮·惠里耶,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”。我们回顾了阿秒物理学的历史,叙述了获奖者的成就及其在该领域的地位,讨论了创造阿秒脉冲所带来的突破,并展望了阿秒物理学的未来发展。
{"title":"Shining the shortest flashes of light on the secret life of electrons","authors":"Margarita Khokhlova, Emilio Pisanty, Amelle Zaïr","doi":"10.1117/1.ap.5.6.060501","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.060501","url":null,"abstract":"The Nobel Prize in Physics 2023 was awarded to Pierre Agostini, Ferenc Krausz and Anne L’Huillier for “experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter.” We review the history of attosecond physics, recount the laureates’ achievements and their place within the field, discuss the breakthroughs made possible by the creation of attosecond pulses, and look to the future advances in attoscience.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"535 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135637377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Compact multi-mode silicon-nitride micro-ring resonator with low loss 紧凑的低损耗多模氮化硅微环谐振器
1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-11-01 DOI: 10.1117/1.ap.5.5.050503
Kaixuan Ye, David Marpaung
Advanced Photonics, co-published by SPIE and Chinese Laser Press, is a highly selective, Gold Open Access, international journal publishing innovative research in all areas of optics and photonics, including fundamental and applied research.
由SPIE和中国激光出版社联合出版的《先进光子学》是一本高选择性、黄金开放获取的国际期刊,发表光学和光子学各个领域的创新研究,包括基础研究和应用研究。
{"title":"Compact multi-mode silicon-nitride micro-ring resonator with low loss","authors":"Kaixuan Ye, David Marpaung","doi":"10.1117/1.ap.5.5.050503","DOIUrl":"https://doi.org/10.1117/1.ap.5.5.050503","url":null,"abstract":"<i>Advanced Photonics</i>, co-published by SPIE and Chinese Laser Press, is a highly selective, Gold Open Access, international journal publishing innovative research in all areas of optics and photonics, including fundamental and applied research.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"64 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135321461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-chip digitally tunable positive/negative dispersion controller using bidirectional chirped multimode waveguide gratings 使用双向啁啾多模波导光栅的片上数字可调正/负色散控制器
IF 17.3 1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-11-01 DOI: 10.1117/1.AP.5.6.066005
Shujun Liu, Ruitao Ma, Zejie Yu, Yaocheng Shi, Daoxin Dai
Abstract. A silicon-based digitally tunable positive/negative dispersion controller (DC) is proposed and realized for the first time using the cascaded bidirectional chirped multimode waveguide gratings (CMWGs), achieving positive and negative dispersion by switching the light propagation direction. A 1  ×  2 Mach–Zehnder switch (MZS) and a 2  ×  1 MZS are placed before and after to route the light path for realizing positive/negative switching. The device has Q stages of identical bidirectional CMWGs with a binary sequence. Thus the digital tuning is convenient and scalable, and the total dispersion accumulated by all the stages can be tuned digitally from −  (  2Q  −  1  )  D0 to   (  2Q  −  1  )  D0 with a step of D0 by controlling the switching states of all 2  ×  2 MZSs, where D0 is the dispersion provided by a single bidirectional CMWG unit. Finally, a digitally tunable positive/negative DC with Q  =  4 is designed and fabricated. These CMWGs are designed with a 4-mm-long grating section, enabling the dispersion D0 of about 4.16  ps  /  nm in a 20-nm-wide bandwidth. The dispersion is tuned from −61.53 to 63.77  ps  /  nm by switching all MZSs appropriately, and the corresponding group delay is varied from −1021 to 1037 ps.
摘要。利用级联双向啁啾多模波导光栅(CMWG),首次提出并实现了硅基数字可调正/负色散控制器(DC),通过切换光传播方向实现正/负色散。在实现正/负色散切换的光路路径上,前后放置了一个 1 × 2 马赫-泽恩德开关(MZS)和一个 2 × 1 MZS。该装置有 Q 级相同的双向 CMWG,具有二进制序列。通过控制所有 2 × 2 MZS 的开关状态,所有级累积的总色散可以从 - ( 2Q - 1 ) D0 到 ( 2Q - 1 ) D0 以 D0 为步长进行数字调整,其中 D0 是单个双向 CMWG 单元提供的色散。最后,设计并制造出了 Q = 4 的数字可调正/负直流。这些 CMWG 具有 4 毫米长的光栅部分,可在 20 纳米宽的带宽内实现约 4.16 ps / nm 的色散 D0。通过适当切换所有 MZS,色散可在 -61.53 至 63.77 ps / nm 之间调整,相应的群延迟可在 -1021 至 1037 ps 之间变化。
{"title":"On-chip digitally tunable positive/negative dispersion controller using bidirectional chirped multimode waveguide gratings","authors":"Shujun Liu, Ruitao Ma, Zejie Yu, Yaocheng Shi, Daoxin Dai","doi":"10.1117/1.AP.5.6.066005","DOIUrl":"https://doi.org/10.1117/1.AP.5.6.066005","url":null,"abstract":"Abstract. A silicon-based digitally tunable positive/negative dispersion controller (DC) is proposed and realized for the first time using the cascaded bidirectional chirped multimode waveguide gratings (CMWGs), achieving positive and negative dispersion by switching the light propagation direction. A 1  ×  2 Mach–Zehnder switch (MZS) and a 2  ×  1 MZS are placed before and after to route the light path for realizing positive/negative switching. The device has Q stages of identical bidirectional CMWGs with a binary sequence. Thus the digital tuning is convenient and scalable, and the total dispersion accumulated by all the stages can be tuned digitally from −  (  2Q  −  1  )  D0 to   (  2Q  −  1  )  D0 with a step of D0 by controlling the switching states of all 2  ×  2 MZSs, where D0 is the dispersion provided by a single bidirectional CMWG unit. Finally, a digitally tunable positive/negative DC with Q  =  4 is designed and fabricated. These CMWGs are designed with a 4-mm-long grating section, enabling the dispersion D0 of about 4.16  ps  /  nm in a 20-nm-wide bandwidth. The dispersion is tuned from −61.53 to 63.77  ps  /  nm by switching all MZSs appropriately, and the corresponding group delay is varied from −1021 to 1037 ps.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"25 1","pages":"066005 - 066005"},"PeriodicalIF":17.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139293781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
About the cover: Advanced Photonics Volume 5, Issue 5 关于封面:先进光子学卷5,第5期
1区 物理与天体物理 Q1 OPTICS Pub Date : 2023-10-28 DOI: 10.1117/1.ap.5.5.059901
{"title":"About the cover: Advanced Photonics Volume 5, Issue 5","authors":"","doi":"10.1117/1.ap.5.5.059901","DOIUrl":"https://doi.org/10.1117/1.ap.5.5.059901","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136161041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1