Guillaume Jouvet, Denis Cohen, Emmanuele Russo, Jonathan Buzan, Christoph C. Raible, Wilfried Haeberli, Sarah Kamleitner, Susan Ivy-Ochs, Michael A. Imhof, Jens K. Becker, Angela Landgraf, Urs H. Fischer
{"title":"Coupled climate-glacier modelling of the last glaciation in the Alps","authors":"Guillaume Jouvet, Denis Cohen, Emmanuele Russo, Jonathan Buzan, Christoph C. Raible, Wilfried Haeberli, Sarah Kamleitner, Susan Ivy-Ochs, Michael A. Imhof, Jens K. Becker, Angela Landgraf, Urs H. Fischer","doi":"10.1017/jog.2023.74","DOIUrl":null,"url":null,"abstract":"Abstract Our limited knowledge of the climate prevailing over Europe during former glaciations is the main obstacle to reconstruct the past evolution of the ice coverage over the Alps by numerical modelling. To address this challenge, we perform a two-step modelling approach: First, a regional climate model is used to downscale the time slice simulations of a global earth system model in high resolution, leading to climate snapshots during the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4 (MIS4). Second, we combine these snapshots and a climate signal proxy to build a transient climate over the last glacial period and force the Parallel Ice Sheet Model to simulate the dynamical evolution of glaciers in the Alps. The results show that the extent of modelled glaciers during the LGM agrees with several independent key geological imprints, including moraine-based maximal reconstructed glacial extents, known ice transfluences and trajectories of erratic boulders of known origin and deposition. Our results highlight the benefit of multiphysical coupled climate and glacier transient modelling over simpler approaches to help reconstruct paleo glacier fluctuations in agreement with traces they have left on the landscape.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"51 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jog.2023.74","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Our limited knowledge of the climate prevailing over Europe during former glaciations is the main obstacle to reconstruct the past evolution of the ice coverage over the Alps by numerical modelling. To address this challenge, we perform a two-step modelling approach: First, a regional climate model is used to downscale the time slice simulations of a global earth system model in high resolution, leading to climate snapshots during the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4 (MIS4). Second, we combine these snapshots and a climate signal proxy to build a transient climate over the last glacial period and force the Parallel Ice Sheet Model to simulate the dynamical evolution of glaciers in the Alps. The results show that the extent of modelled glaciers during the LGM agrees with several independent key geological imprints, including moraine-based maximal reconstructed glacial extents, known ice transfluences and trajectories of erratic boulders of known origin and deposition. Our results highlight the benefit of multiphysical coupled climate and glacier transient modelling over simpler approaches to help reconstruct paleo glacier fluctuations in agreement with traces they have left on the landscape.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.