Integrated urban heat sinks for low-carbon neighbourhoods: dissipating heat to the ground and sky through building structures

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2023-10-06 DOI:10.1080/19401493.2023.2265335
Eduardo Gascón Alvarez, Kiley Feickert, Mohamed A. Ismail, Caitlin T. Mueller, Leslie K. Norford
{"title":"Integrated urban heat sinks for low-carbon neighbourhoods: dissipating heat to the ground and sky through building structures","authors":"Eduardo Gascón Alvarez, Kiley Feickert, Mohamed A. Ismail, Caitlin T. Mueller, Leslie K. Norford","doi":"10.1080/19401493.2023.2265335","DOIUrl":null,"url":null,"abstract":"In a global context of simultaneous urbanization and rising ambient temperatures, it is imperative to design heat-resilient and material-efficient neighbourhoods that respond to the pressing demand for housing with minimal environmental impact. With this goal in mind, the work presented here focuses on the integration of heat dissipation systems within structural building components, introducing a novel framework for their systems-level simulation and design. Two well-studied, low-cost systems (shallow geothermal and night-sky cooling) are modelled within a parametric design workflow that combines bottom-up structural embodied carbon calculations with annual building energy simulations that account for heat sink availability. The proposed method results in a fast and reliable early-stage design tool that allows urban planners, policymakers, and designers to evaluate the suitability of available heat dissipation technologies across climates and urban morphologies. This paper analyzes specifically the multi-domain performance of a hypothetical urban geometry within three different cooling-dominated locations (Algiers, Cairo, and Bangkok).","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2265335","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In a global context of simultaneous urbanization and rising ambient temperatures, it is imperative to design heat-resilient and material-efficient neighbourhoods that respond to the pressing demand for housing with minimal environmental impact. With this goal in mind, the work presented here focuses on the integration of heat dissipation systems within structural building components, introducing a novel framework for their systems-level simulation and design. Two well-studied, low-cost systems (shallow geothermal and night-sky cooling) are modelled within a parametric design workflow that combines bottom-up structural embodied carbon calculations with annual building energy simulations that account for heat sink availability. The proposed method results in a fast and reliable early-stage design tool that allows urban planners, policymakers, and designers to evaluate the suitability of available heat dissipation technologies across climates and urban morphologies. This paper analyzes specifically the multi-domain performance of a hypothetical urban geometry within three different cooling-dominated locations (Algiers, Cairo, and Bangkok).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低碳社区的综合城市散热器:通过建筑结构将热量散发到地面和天空
在同时城市化和环境温度上升的全球背景下,必须设计耐热和材料高效的社区,以最小的环境影响响应住房的迫切需求。考虑到这一目标,本文介绍的工作侧重于结构建筑组件内散热系统的集成,为其系统级模拟和设计引入了一种新的框架。两个经过充分研究的低成本系统(浅层地热和夜空冷却)在参数化设计工作流程中建模,该工作流程结合了自下而上的结构隐含碳计算和考虑散热器可用性的年度建筑能源模拟。该方法提供了一种快速可靠的早期设计工具,使城市规划者、政策制定者和设计师能够评估各种气候和城市形态下可用散热技术的适用性。本文具体分析了在三个不同的以冷却为主的地点(阿尔及尔、开罗和曼谷)假设的城市几何结构的多域性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
IMPACT pathways – a bottom-up modelling framework to guide sustainable growth and avoid carbon lock-in of cities Evaluation of a building envelope Heat Transfer Coefficient in use: Bayesian approach to improve the inclusion of solar gains Effect of temperature-dependent and hysteretic sorption in computational mould risk analyses of wood fibreboard sheathing A neural network-based surrogate model to predict building features from heating and cooling load signatures Students’ behaviour analysis based on correlating thermal comfort and spatial simulations; case study of a schoolyard in Shiraz City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1