The asymptotic tails of limit distributions of continuous-time Markov chains

Pub Date : 2023-10-06 DOI:10.1017/apr.2023.42
Chuang Xu, Mads Christian Hansen, Carsten Wiuf
{"title":"The asymptotic tails of limit distributions of continuous-time Markov chains","authors":"Chuang Xu, Mads Christian Hansen, Carsten Wiuf","doi":"10.1017/apr.2023.42","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions (QSDs) of continuous-time Markov chains on subsets of the non-negative integers. Based on the so-called flux-balance equation, we establish identities for stationary measures and QSDs, which we use to derive tail asymptotics. In particular, for continuous-time Markov chains with asymptotic power law transition rates, tail asymptotics for stationary distributions and QSDs are classified into three types using three easily computable parameters: (i) super-exponential distributions, (ii) exponential-tailed distributions, and (iii) sub-exponential distributions. Our approach to establish tail asymptotics of stationary distributions is different from the classical semimartingale approach, and we do not impose ergodicity or moment bound conditions. In particular, the results also hold for explosive Markov chains, for which multiple stationary distributions may exist. Furthermore, our results on tail asymptotics of QSDs seem new. We apply our results to biochemical reaction networks, a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth–death processes. Our approach, together with the identities, easily extends to discrete-time Markov chains.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/apr.2023.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions (QSDs) of continuous-time Markov chains on subsets of the non-negative integers. Based on the so-called flux-balance equation, we establish identities for stationary measures and QSDs, which we use to derive tail asymptotics. In particular, for continuous-time Markov chains with asymptotic power law transition rates, tail asymptotics for stationary distributions and QSDs are classified into three types using three easily computable parameters: (i) super-exponential distributions, (ii) exponential-tailed distributions, and (iii) sub-exponential distributions. Our approach to establish tail asymptotics of stationary distributions is different from the classical semimartingale approach, and we do not impose ergodicity or moment bound conditions. In particular, the results also hold for explosive Markov chains, for which multiple stationary distributions may exist. Furthermore, our results on tail asymptotics of QSDs seem new. We apply our results to biochemical reaction networks, a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth–death processes. Our approach, together with the identities, easily extends to discrete-time Markov chains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
连续时间马尔可夫链极限分布的渐近尾
摘要研究了非负整数子集上连续时间马尔可夫链的平稳分布和拟平稳分布的尾渐近性。基于所谓的通量平衡方程,我们建立了平稳测度和qsd的恒等式,我们用它来推导尾渐近。特别地,对于具有渐近幂律转移率的连续时间马尔可夫链,平稳分布和qsd的尾部渐近性使用三个易于计算的参数分为三种类型:(i)超指数分布,(ii)指数尾部分布和(iii)次指数分布。我们建立平稳分布的尾部渐近性的方法不同于经典的半鞅方法,并且我们不施加遍历性或矩界条件。特别地,结果也适用于可能存在多个平稳分布的爆炸马尔可夫链。此外,我们关于qsd的尾部渐近性的结果似乎是新的。我们将我们的结果应用于生化反应网络、一般单细胞随机基因表达模型、扩展类分支过程和突发性繁殖的随机种群过程,这些过程都不是生-死过程。我们的方法,连同恒等式,很容易推广到离散时间马尔可夫链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1