{"title":"APR volume 56 issue 2 Cover and Front matter","authors":"","doi":"10.1017/apr.2024.7","DOIUrl":"https://doi.org/10.1017/apr.2024.7","url":null,"abstract":"","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141017342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APR volume 56 issue 2 Cover and Back matter","authors":"","doi":"10.1017/apr.2024.8","DOIUrl":"https://doi.org/10.1017/apr.2024.8","url":null,"abstract":"","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141014816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APR volume 55 issue 4 Cover and Front matter","authors":"","doi":"10.1017/apr.2023.32","DOIUrl":"https://doi.org/10.1017/apr.2023.32","url":null,"abstract":"","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139017696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study is to present a subgeometric convergence formula for the stationary distribution of the finite-level M/G/1-type Markov chain when taking its infinite-level limit, where the upper boundary level goes to infinity. This study is carried out using the fundamental deviation matrix, which is a block-decomposition-friendly solution to the Poisson equation of the deviation matrix. The fundamental deviation matrix provides a difference formula for the respective stationary distributions of the finite-level chain and the corresponding infinite-level chain. The difference formula plays a crucial role in the derivation of the main result of this paper, and the main result is used, for example, to derive an asymptotic formula for the loss probability in the MAP/GI/1/N queue.
{"title":"A subgeometric convergence formula for finite-level M/G/1-type Markov chains: via a block-decomposition-friendly solution to the Poisson equation of the deviation matrix","authors":"Hiroyuki Masuyama, Y. Katsumata, Tatsuaki Kimura","doi":"10.1017/apr.2023.39","DOIUrl":"https://doi.org/10.1017/apr.2023.39","url":null,"abstract":"\u0000 The purpose of this study is to present a subgeometric convergence formula for the stationary distribution of the finite-level M/G/1-type Markov chain when taking its infinite-level limit, where the upper boundary level goes to infinity. This study is carried out using the fundamental deviation matrix, which is a block-decomposition-friendly solution to the Poisson equation of the deviation matrix. The fundamental deviation matrix provides a difference formula for the respective stationary distributions of the finite-level chain and the corresponding infinite-level chain. The difference formula plays a crucial role in the derivation of the main result of this paper, and the main result is used, for example, to derive an asymptotic formula for the loss probability in the MAP/GI/1/N queue.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138615127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APR volume 55 issue 4 Cover and Back matter","authors":"","doi":"10.1017/apr.2023.33","DOIUrl":"https://doi.org/10.1017/apr.2023.33","url":null,"abstract":"","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139023562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
此内容的摘要不可用,因此提供了预览。有关如何访问此内容的信息,请使用上面的获取访问链接。
{"title":"On sparsity, power-law, and clustering properties of graphex processes - ADDENDUM","authors":"François Caron, Francesca Panero, Judith Rousseau","doi":"10.1017/apr.2023.47","DOIUrl":"https://doi.org/10.1017/apr.2023.47","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vanderlei da Costa Bueno, Narayanaswamy Balakrishnan
Abstract Inaccuracy and information measures based on cumulative residual entropy are quite useful and have received considerable attention in many fields, such as statistics, probability, and reliability theory. In particular, many authors have studied cumulative residual inaccuracy between coherent systems based on system lifetimes. In a previous paper (Bueno and Balakrishnan, Prob. Eng. Inf. Sci. 36 , 2022), we discussed a cumulative residual inaccuracy measure for coherent systems at component level, that is, based on the common, stochastically dependent component lifetimes observed under a non-homogeneous Poisson process. In this paper, using a point process martingale approach, we extend this concept to a cumulative residual inaccuracy measure between non-explosive point processes and then specialize the results to Markov occurrence times. If the processes satisfy the proportional risk hazard process property, then the measure determines the Markov chain uniquely. Several examples are presented, including birth-and-death processes and pure birth process, and then the results are applied to coherent systems at component level subject to Markov failure and repair processes.
{"title":"An inaccuracy measure between non-explosive point processes with applications to Markov chains","authors":"Vanderlei da Costa Bueno, Narayanaswamy Balakrishnan","doi":"10.1017/apr.2023.44","DOIUrl":"https://doi.org/10.1017/apr.2023.44","url":null,"abstract":"Abstract Inaccuracy and information measures based on cumulative residual entropy are quite useful and have received considerable attention in many fields, such as statistics, probability, and reliability theory. In particular, many authors have studied cumulative residual inaccuracy between coherent systems based on system lifetimes. In a previous paper (Bueno and Balakrishnan, Prob. Eng. Inf. Sci. 36 , 2022), we discussed a cumulative residual inaccuracy measure for coherent systems at component level, that is, based on the common, stochastically dependent component lifetimes observed under a non-homogeneous Poisson process. In this paper, using a point process martingale approach, we extend this concept to a cumulative residual inaccuracy measure between non-explosive point processes and then specialize the results to Markov occurrence times. If the processes satisfy the proportional risk hazard process property, then the measure determines the Markov chain uniquely. Several examples are presented, including birth-and-death processes and pure birth process, and then the results are applied to coherent systems at component level subject to Markov failure and repair processes.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135113277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions (QSDs) of continuous-time Markov chains on subsets of the non-negative integers. Based on the so-called flux-balance equation, we establish identities for stationary measures and QSDs, which we use to derive tail asymptotics. In particular, for continuous-time Markov chains with asymptotic power law transition rates, tail asymptotics for stationary distributions and QSDs are classified into three types using three easily computable parameters: (i) super-exponential distributions, (ii) exponential-tailed distributions, and (iii) sub-exponential distributions. Our approach to establish tail asymptotics of stationary distributions is different from the classical semimartingale approach, and we do not impose ergodicity or moment bound conditions. In particular, the results also hold for explosive Markov chains, for which multiple stationary distributions may exist. Furthermore, our results on tail asymptotics of QSDs seem new. We apply our results to biochemical reaction networks, a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth–death processes. Our approach, together with the identities, easily extends to discrete-time Markov chains.
{"title":"The asymptotic tails of limit distributions of continuous-time Markov chains","authors":"Chuang Xu, Mads Christian Hansen, Carsten Wiuf","doi":"10.1017/apr.2023.42","DOIUrl":"https://doi.org/10.1017/apr.2023.42","url":null,"abstract":"Abstract This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions (QSDs) of continuous-time Markov chains on subsets of the non-negative integers. Based on the so-called flux-balance equation, we establish identities for stationary measures and QSDs, which we use to derive tail asymptotics. In particular, for continuous-time Markov chains with asymptotic power law transition rates, tail asymptotics for stationary distributions and QSDs are classified into three types using three easily computable parameters: (i) super-exponential distributions, (ii) exponential-tailed distributions, and (iii) sub-exponential distributions. Our approach to establish tail asymptotics of stationary distributions is different from the classical semimartingale approach, and we do not impose ergodicity or moment bound conditions. In particular, the results also hold for explosive Markov chains, for which multiple stationary distributions may exist. Furthermore, our results on tail asymptotics of QSDs seem new. We apply our results to biochemical reaction networks, a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth–death processes. Our approach, together with the identities, easily extends to discrete-time Markov chains.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preservation of stochastic orders through the system signature has captured the attention of researchers in recent years. Signature-based comparisons have been made for the usual stochastic order, hazard rate order, and likelihood ratio orders. However, for the mean residual life (MRL) order, it has recently been proved that the preservation result does not hold true in general, but rather holds for a particular class of distributions. In this paper, we study whether or not a similar preservation result holds for the mean inactivity time (MIT) order. We prove that the MIT order is not preserved from signatures to system lifetimes with independent and identically distributed (i.i.d.) components, but holds for special classes of distributions. The relationship between these classes and the order statistics is also highlighted. Furthermore, the distribution-free comparison of the performance of coherent systems with dependent and identically distributed (d.i.d.) components is studied under the MIT ordering, using diagonal-dependent copulas and distorted distributions.
{"title":"Preservation of mean inactivity time ordering for coherent systems","authors":"T. V. Rao, Sameen Naqvi","doi":"10.1017/apr.2023.41","DOIUrl":"https://doi.org/10.1017/apr.2023.41","url":null,"abstract":"Preservation of stochastic orders through the system signature has captured the attention of researchers in recent years. Signature-based comparisons have been made for the usual stochastic order, hazard rate order, and likelihood ratio orders. However, for the mean residual life (MRL) order, it has recently been proved that the preservation result does not hold true in general, but rather holds for a particular class of distributions. In this paper, we study whether or not a similar preservation result holds for the mean inactivity time (MIT) order. We prove that the MIT order is not preserved from signatures to system lifetimes with independent and identically distributed (i.i.d.) components, but holds for special classes of distributions. The relationship between these classes and the order statistics is also highlighted. Furthermore, the distribution-free comparison of the performance of coherent systems with dependent and identically distributed (d.i.d.) components is studied under the MIT ordering, using diagonal-dependent copulas and distorted distributions.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134975704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $unicode{x2124}$ : in this model, the probability that the walk moves from a point of $unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.
{"title":"Fluctuations of the local times of the self-repelling random walk with directed edges","authors":"Laure Marêché","doi":"10.1017/apr.2023.37","DOIUrl":"https://doi.org/10.1017/apr.2023.37","url":null,"abstract":"Abstract In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on $unicode{x2124}$ : in this model, the probability that the walk moves from a point of $unicode{x2124}$ to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod $M_1$ topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135353713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}