Non-minimaxity of debiased shrinkage estimators

IF 1.1 Q3 STATISTICS & PROBABILITY Japanese Journal of Statistics and Data Science Pub Date : 2023-10-06 DOI:10.1007/s42081-023-00218-x
Yuzo Maruyama, Akimichi Takemura
{"title":"Non-minimaxity of debiased shrinkage estimators","authors":"Yuzo Maruyama, Akimichi Takemura","doi":"10.1007/s42081-023-00218-x","DOIUrl":null,"url":null,"abstract":"Abstract We consider the estimation of the p -variate normal mean of $$X\\sim \\mathcal {N}_p(\\theta ,I)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>∼</mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>I</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> under the quadratic loss function. We investigate the decision theoretic properties of debiased shrinkage estimator, the estimator which shrinks towards the origin for smaller $$\\Vert x\\Vert ^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>‖</mml:mo> <mml:mi>x</mml:mi> <mml:mo>‖</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> and which is exactly equal to the unbiased estimator X for larger $$\\Vert x\\Vert ^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>‖</mml:mo> <mml:mi>x</mml:mi> <mml:mo>‖</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> . Such debiased shrinkage estimator seems superior to the unbiased estimator X , which implies minimaxity. However, we show that it is not minimax under mild conditions.","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"14 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42081-023-00218-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the estimation of the p -variate normal mean of $$X\sim \mathcal {N}_p(\theta ,I)$$ X N p ( θ , I ) under the quadratic loss function. We investigate the decision theoretic properties of debiased shrinkage estimator, the estimator which shrinks towards the origin for smaller $$\Vert x\Vert ^2$$ x 2 and which is exactly equal to the unbiased estimator X for larger $$\Vert x\Vert ^2$$ x 2 . Such debiased shrinkage estimator seems superior to the unbiased estimator X , which implies minimaxity. However, we show that it is not minimax under mild conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无偏差收缩估计量的非极小性
摘要考虑了二阶损失函数下$$X\sim \mathcal {N}_p(\theta ,I)$$ X ~ N p (θ, I)的p变量正态均值的估计。我们研究了去偏收缩估计量的决策理论性质,对于较小的$$\Vert x\Vert ^2$$‖x‖2,估计量向原点收缩,对于较大的$$\Vert x\Vert ^2$$‖x‖2,估计量完全等于无偏估计量x。这种去偏收缩估计量似乎优于无偏估计量X,无偏估计量意味着极小。然而,我们证明在温和条件下它不是极小极大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
42
期刊最新文献
Selection of statistics for a multinomial goodness-of-fit test and a test of independence for a multi-way contingency table when data are sparse Sparse inference of structural equation modeling with latent variables for diffusion processes Stein-rule M-estimation in sparse partially linear models Expansion estimators improving the bias and risk of James–Stein’s shrinkage estimator Bivariate dynamic weighted cumulative residual entropy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1