首页 > 最新文献

Japanese Journal of Statistics and Data Science最新文献

英文 中文
Methodological challenges in studying disease processes using observational cohort data. 使用观察性队列数据研究疾病过程的方法学挑战。
IF 1.1 Q3 STATISTICS & PROBABILITY Pub Date : 2025-01-01 Epub Date: 2024-10-30 DOI: 10.1007/s42081-024-00276-9
Richard J Cook, Jerald F Lawless

Cohort studies of disease processes deal with events and other outcomes that may occur in individuals following disease onset. The particular goals are often the evaluation of interventions and estimation of the effects of risk factors that may affect the disease course. Models and methods of event history analysis and longitudinal data analysis provide tools for understanding disease processes, but there are numerous challenges in practice. These are related to the complexity of the disease processes and to the difficulty of recruiting representative individuals and acquiring detailed longitudinal data on their disease course. Our objectives here are to describe some of these challenges and to review methods of addressing them. We emphasize the appeal of multistate models as a framework for understanding both disease processes and the processes governing recruitment of individuals for cohort studies and the collection of data. The use of other observational data sources in order to enhance model fitting and analysis is discussed.

疾病过程的队列研究处理疾病发病后个体可能发生的事件和其他结果。具体目标通常是评估干预措施和估计可能影响疾病进程的风险因素的影响。事件历史分析和纵向数据分析的模型和方法为了解疾病过程提供了工具,但在实践中存在许多挑战。这与疾病过程的复杂性以及招募具有代表性的个体和获取其疾病过程的详细纵向数据的难度有关。我们在这里的目标是描述其中的一些挑战,并回顾解决这些挑战的方法。我们强调多状态模型作为理解疾病过程和管理队列研究和数据收集的个体招募过程的框架的吸引力。讨论了利用其他观测数据源来加强模型拟合和分析。
{"title":"Methodological challenges in studying disease processes using observational cohort data.","authors":"Richard J Cook, Jerald F Lawless","doi":"10.1007/s42081-024-00276-9","DOIUrl":"10.1007/s42081-024-00276-9","url":null,"abstract":"<p><p>Cohort studies of disease processes deal with events and other outcomes that may occur in individuals following disease onset. The particular goals are often the evaluation of interventions and estimation of the effects of risk factors that may affect the disease course. Models and methods of event history analysis and longitudinal data analysis provide tools for understanding disease processes, but there are numerous challenges in practice. These are related to the complexity of the disease processes and to the difficulty of recruiting representative individuals and acquiring detailed longitudinal data on their disease course. Our objectives here are to describe some of these challenges and to review methods of addressing them. We emphasize the appeal of multistate models as a framework for understanding both disease processes and the processes governing recruitment of individuals for cohort studies and the collection of data. The use of other observational data sources in order to enhance model fitting and analysis is discussed.</p>","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"8 1","pages":"323-345"},"PeriodicalIF":1.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144477024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection of statistics for a multinomial goodness-of-fit test and a test of independence for a multi-way contingency table when data are sparse 在数据稀少的情况下,选择多项式拟合优度检验和多向或然表独立性检验的统计量
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2024-01-03 DOI: 10.1007/s42081-023-00233-y
Nobuhiro Taneichi, Yuri Sekiya
{"title":"Selection of statistics for a multinomial goodness-of-fit test and a test of independence for a multi-way contingency table when data are sparse","authors":"Nobuhiro Taneichi, Yuri Sekiya","doi":"10.1007/s42081-023-00233-y","DOIUrl":"https://doi.org/10.1007/s42081-023-00233-y","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"14 1","pages":"1-32"},"PeriodicalIF":1.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse inference of structural equation modeling with latent variables for diffusion processes 扩散过程潜变量结构方程模型的稀疏推理
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-26 DOI: 10.1007/s42081-023-00230-1
Shogo Kusano, Masayuki Uchida
{"title":"Sparse inference of structural equation modeling with latent variables for diffusion processes","authors":"Shogo Kusano, Masayuki Uchida","doi":"10.1007/s42081-023-00230-1","DOIUrl":"https://doi.org/10.1007/s42081-023-00230-1","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"3 26","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139156637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stein-rule M-estimation in sparse partially linear models 稀疏部分线性模型中的斯坦因规则 M-估计
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-23 DOI: 10.1007/s42081-023-00231-0
E. Raheem, S. E. Ahmed, Shuangzhe Liu
{"title":"Stein-rule M-estimation in sparse partially linear models","authors":"E. Raheem, S. E. Ahmed, Shuangzhe Liu","doi":"10.1007/s42081-023-00231-0","DOIUrl":"https://doi.org/10.1007/s42081-023-00231-0","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"132 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expansion estimators improving the bias and risk of James–Stein’s shrinkage estimator 改进詹姆斯-斯坦缩减估算器偏差和风险的扩展估算器
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-16 DOI: 10.1007/s42081-023-00227-w
Hisayuki Tsukuma
{"title":"Expansion estimators improving the bias and risk of James–Stein’s shrinkage estimator","authors":"Hisayuki Tsukuma","doi":"10.1007/s42081-023-00227-w","DOIUrl":"https://doi.org/10.1007/s42081-023-00227-w","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"56 8","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138967722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bivariate dynamic weighted cumulative residual entropy 双变量动态加权累积残差熵
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-14 DOI: 10.1007/s42081-023-00232-z
R. Nair, E. I. A. Sathar
{"title":"Bivariate dynamic weighted cumulative residual entropy","authors":"R. Nair, E. I. A. Sathar","doi":"10.1007/s42081-023-00232-z","DOIUrl":"https://doi.org/10.1007/s42081-023-00232-z","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"64 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138974945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability of stress–strength model for exponentiated Teissier distribution based on lower record values 基于较低记录值的指数化泰西分布应力强度模型的可靠性
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-09 DOI: 10.1007/s42081-023-00229-8
Hossein Pasha-Zanoosi
{"title":"Reliability of stress–strength model for exponentiated Teissier distribution based on lower record values","authors":"Hossein Pasha-Zanoosi","doi":"10.1007/s42081-023-00229-8","DOIUrl":"https://doi.org/10.1007/s42081-023-00229-8","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138585609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shrinkage estimation with logarithmic penalties 用对数惩罚进行收缩估计
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-29 DOI: 10.1007/s42081-023-00225-y
Tatsuya Kubokawa
{"title":"Shrinkage estimation with logarithmic penalties","authors":"Tatsuya Kubokawa","doi":"10.1007/s42081-023-00225-y","DOIUrl":"https://doi.org/10.1007/s42081-023-00225-y","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139210453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confidence interval for normal means in meta-analysis based on a pretest estimator 基于预测试估计值的荟萃分析中正态均值的置信区间
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-27 DOI: 10.1007/s42081-023-00221-2
Nanami Taketomi, Yuan-Tsung Chang, Yoshihiko Konno, Mihoko Mori, Takeshi Emura
{"title":"Confidence interval for normal means in meta-analysis based on a pretest estimator","authors":"Nanami Taketomi, Yuan-Tsung Chang, Yoshihiko Konno, Mihoko Mori, Takeshi Emura","doi":"10.1007/s42081-023-00221-2","DOIUrl":"https://doi.org/10.1007/s42081-023-00221-2","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"22 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139233909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate functional subspace classification for high-dimensional longitudinal data 高维纵向数据的多元泛函子空间分类
Q3 STATISTICS & PROBABILITY Pub Date : 2023-11-14 DOI: 10.1007/s42081-023-00226-x
Tatsuya Fukuda, Hidetoshi Matsui, Hiroya Takada, Toshihiro Misumi, Sadanori Konishi
{"title":"Multivariate functional subspace classification for high-dimensional longitudinal data","authors":"Tatsuya Fukuda, Hidetoshi Matsui, Hiroya Takada, Toshihiro Misumi, Sadanori Konishi","doi":"10.1007/s42081-023-00226-x","DOIUrl":"https://doi.org/10.1007/s42081-023-00226-x","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"42 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134954592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Japanese Journal of Statistics and Data Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1