Studi Komparasi Stabilitas Pipa Bawah Laut dengan DNVGL-RP-F109 dan Elemen Hingga

Nafisa Nandalianadhira, Mochammad Fathurridho Hermanto
{"title":"Studi Komparasi Stabilitas Pipa Bawah Laut dengan DNVGL-RP-F109 dan Elemen Hingga","authors":"Nafisa Nandalianadhira, Mochammad Fathurridho Hermanto","doi":"10.21107/rekayasa.v16i2.18804","DOIUrl":null,"url":null,"abstract":"Deployment under the sea without being excavated or buried is the most effective alternative. The subsea pipe line must be ensured to be stable on the seabed, not experiencing movement when exposed to environmental forces. There are two main things that must be analyzed in the design process and stability analysis of subsea pipelines, hydrodynamic and hydrostatic forces. In the subsea pipe line design process, one of the most important steps is determining the wall thickness. One standard that is widely used is DNVGL-ST-F101. The diameter and thickness of the subsea pipeline are important parameters for determining subsea pipeline stability . The relationship between the forces acting to the subsea pipeline and the resistance of the soil (seabed) has been regulated in DNVGL-RP-F109. In addition, stability calculations can also be performed based on subsea pipe line modeling on the seabed using the finite element method. Based on these two methods, the vertical and lateral stability of the subsea pipeline can be determined. If the subsea pipe line is unstable, it is necessary to add concrete coating. Based on the pipe properties and environmental data, the wall thickness of the subsea pipe line is 18 . 203 mm. To be able to meet vertical and lateral stability for operating and installation conditions, 41 mm thick concrete coating is required. The greatest hydrodynamic force occurs in operating condition of 165 . 693 N/m based on DNVGL-RP-F109 and 154 . 150 N/m based on finite element. The difference of those result is only 6.96%.","PeriodicalId":33739,"journal":{"name":"Rekayasa","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rekayasa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/rekayasa.v16i2.18804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deployment under the sea without being excavated or buried is the most effective alternative. The subsea pipe line must be ensured to be stable on the seabed, not experiencing movement when exposed to environmental forces. There are two main things that must be analyzed in the design process and stability analysis of subsea pipelines, hydrodynamic and hydrostatic forces. In the subsea pipe line design process, one of the most important steps is determining the wall thickness. One standard that is widely used is DNVGL-ST-F101. The diameter and thickness of the subsea pipeline are important parameters for determining subsea pipeline stability . The relationship between the forces acting to the subsea pipeline and the resistance of the soil (seabed) has been regulated in DNVGL-RP-F109. In addition, stability calculations can also be performed based on subsea pipe line modeling on the seabed using the finite element method. Based on these two methods, the vertical and lateral stability of the subsea pipeline can be determined. If the subsea pipe line is unstable, it is necessary to add concrete coating. Based on the pipe properties and environmental data, the wall thickness of the subsea pipe line is 18 . 203 mm. To be able to meet vertical and lateral stability for operating and installation conditions, 41 mm thick concrete coating is required. The greatest hydrodynamic force occurs in operating condition of 165 . 693 N/m based on DNVGL-RP-F109 and 154 . 150 N/m based on finite element. The difference of those result is only 6.96%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNVGL-RP-F109管道稳定性比较研究
部署在海底而不被挖掘或掩埋是最有效的选择。海底管线必须保证在海床上的稳定,在环境力作用下不发生移动。在海底管道的设计过程和稳定性分析中,有两个主要的东西必须进行分析,即水动力和水静力。在海底管线设计过程中,最重要的步骤之一是确定管壁厚度。一种广泛使用的标准是DNVGL-ST-F101。海底管道的直径和厚度是决定海底管道稳定性的重要参数。DNVGL-RP-F109规范了作用于海底管道的力与土壤(海底)阻力之间的关系。此外,还可以利用有限元法对海底管线进行建模,进行稳定性计算。基于这两种方法,可以确定海底管道的垂直和横向稳定性。如果海底管线不稳定,则需要添加混凝土涂层。根据管道性能和环境数据,海底管线的壁厚为18。203毫米。为了满足运行和安装条件下的垂直和横向稳定性,需要41mm厚的混凝土涂层。最大的水动力出现在165的工况下。693 N/m基于DNVGL-RP-F109和154。150n /m的有限元计算。结果的差异仅为6.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
12 weeks
期刊最新文献
Pemakaian Temporary Tower untuk Optimalisasi Penyelesaian Rekonduktoring dan Penggantian Tower Saluran Udara Tegangan Tinggi (SUTT) 150 KV Identifikasi Kekuatan Butt Joint dan Lap Joint pada Pengelasan Konstruksi Kapal Rancang Bangun Mesin Screw Extruder Pencetak Arang Briket Fuzzy Logic dalam Pengontrolan Nilai Intensitas Cahaya LED pada Mini Plant Factory Budidaya Tanaman Pak Choy (Brassica Chinensis L.) Hidroponik Studi Komparasi Stabilitas Pipa Bawah Laut dengan DNVGL-RP-F109 dan Elemen Hingga
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1