Optimization of a three-row air-suction Brassica chinensis precision metering device based on CFD-DEM coupling simulation

IF 2.2 2区 农林科学 Q2 AGRICULTURAL ENGINEERING International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI:10.25165/j.ijabe.20231603.7812
Xinping Sun, Hua Li, Xindan Qi, Dinghao Feng, Jianqi Zhou, Yongjian Wang, Samuel Mbugua Nyambura, Xiaoyu Zhang, Xi Chen
{"title":"Optimization of a three-row air-suction Brassica chinensis precision metering device based on CFD-DEM coupling simulation","authors":"Xinping Sun, Hua Li, Xindan Qi, Dinghao Feng, Jianqi Zhou, Yongjian Wang, Samuel Mbugua Nyambura, Xiaoyu Zhang, Xi Chen","doi":"10.25165/j.ijabe.20231603.7812","DOIUrl":null,"url":null,"abstract":"This study aimed to optimize a three-row air-suction Brassica chinensis precision metering device to improve the low seeding performance. ANSYS 17.0 Software was used to analyze the effect of different numbers of suction holes and different suction hole structures on the airflow field. It was found that a suction hole number of 60 was beneficial to the flow field stability and a conical hole structure was beneficial to the adsorption of seeds. Box-Behnken design experiments were carried out with negative pressure, rotational speed, and hole diameter as the experimental factors. The optimal parameter combination was achieved when the negative pressure was 3.96 kPa, the rotational speed of the seeding plate was 1.49 rad/s and the hole diameter was 1.10 mm. The qualification rate of inner, middle, and outer rings were 87.580%, 90.548%, and 90.117%, respectively, and the miss seeding rate of inner, middle, and outer rings were 10.915%, 7.139%, and 5.920%, respectively. Keywords: Brassica chinensis, metering device, airflow field, Box-Behnken design DOI: 10.25165/j.ijabe.20231603.7812 Citation: Sun X P, Li H, Qi X D, Feng D H, Zhou J Q, Wang Y J, et al. Optimization of a three-row air-suction Brassica chinensis precision metering device based on CFD-DEM coupling simulation. Int J Agric & Biol Eng, 2023; 16(3): 130–142.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231603.7812","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to optimize a three-row air-suction Brassica chinensis precision metering device to improve the low seeding performance. ANSYS 17.0 Software was used to analyze the effect of different numbers of suction holes and different suction hole structures on the airflow field. It was found that a suction hole number of 60 was beneficial to the flow field stability and a conical hole structure was beneficial to the adsorption of seeds. Box-Behnken design experiments were carried out with negative pressure, rotational speed, and hole diameter as the experimental factors. The optimal parameter combination was achieved when the negative pressure was 3.96 kPa, the rotational speed of the seeding plate was 1.49 rad/s and the hole diameter was 1.10 mm. The qualification rate of inner, middle, and outer rings were 87.580%, 90.548%, and 90.117%, respectively, and the miss seeding rate of inner, middle, and outer rings were 10.915%, 7.139%, and 5.920%, respectively. Keywords: Brassica chinensis, metering device, airflow field, Box-Behnken design DOI: 10.25165/j.ijabe.20231603.7812 Citation: Sun X P, Li H, Qi X D, Feng D H, Zhou J Q, Wang Y J, et al. Optimization of a three-row air-suction Brassica chinensis precision metering device based on CFD-DEM coupling simulation. Int J Agric & Biol Eng, 2023; 16(3): 130–142.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CFD-DEM耦合仿真的三排空气吸式芸苔精密计量装置优化
本研究旨在优化三排吸风式芸苔精密计量装置,以改善芸苔低播性能。采用ANSYS 17.0软件分析不同吸气孔数量和不同吸气孔结构对气流场的影响。结果表明,吸孔数为60有利于流场稳定性,锥孔结构有利于种子吸附。以负压、转速、孔径为试验因素,进行Box-Behnken设计试验。当负压为3.96 kPa,播种板转速为1.49 rad/s,孔直径为1.10 mm时,参数组合最优。内圈、中圈和外圈的合格率分别为87.580%、90.548%和90.117%,内圈、中圈和外圈的未播种率分别为10.915%、7.139%和5.920%。关键词:芸芥,计量装置,气流场,Box-Behnken设计DOI: 10.25165/ j.j ijabe.20231603.7812引用本文:孙晓平,李辉,齐晓东,冯德华,周建强,王永军,等。基于CFD-DEM耦合仿真的三排空气吸式芸苔精密计量装置优化农业与生物工程学报,2023;16(3): 130 - 142。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
12.50%
发文量
88
审稿时长
24 weeks
期刊介绍: International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.
期刊最新文献
Effects of spray adjuvants and operation modes on droplet deposition and elm aphid control using an unmanned aerial vehicle Comprehensive evaluation of the optimal rates of irrigation and potassium application for strawberry Design and test of the bilateral throwing soil-covering device for straw mulching machine in orchards Detection of the foreign object positions in agricultural soils using Mask-RCNN Separation and mechanical properties of residual film and soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1