首页 > 最新文献

International Journal of Agricultural and Biological Engineering最新文献

英文 中文
Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types 自修复仿生深层土壤对不同土壤类型下土壤抗耕性能、耐磨性和扰动形态的影响
2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231603.7876
Yueming Wang, Chenjie Lu, Jing Chen, Chenhuan Cui, Yijie Pan, Wilhelm Pfleging, Jiyu Sun
Subsoiling has been widely used all over the world as an important operation method of no-tillage farming. For energy-saving and life-extension, the tillage resistance and wear-corrosion of subsoilers have attracted wide attention. In this study, the tillage resistance, soil disturbance, wear and corrosion of subsoiler with S-T-SK-2# biomimetic structures (S means subsoiler; T means tine; SK means shank; 2#, h/s=0.57, h=5 mm and α=45°.) and self-healing coating under two seasons, two locations with different soil properties (black loam and clay soil) and subsoiling speeds (2 km/h and 3.6 km/h) were investigated. The soil moisture content and compactness affected the tillage resistance and wear-corrosion. The tillage resistance and degree of corrosion on all subsoilers were much larger in clay soil than that in black loam soil. Compared with S-T-SK-2#, the tillage reduction rate of C-S-T-SK-2# (S-T-SK-2# with self-healing coating) was up to 14.32% in clay soil under the speed of 2 km/h. The significance tests of regression equation results showed that subsoiler type and soil properties had a significant impact on soil disturbance coefficient, swelling of total soil layer, bulkiness of the plough pan. It is of a guiding significance for the analysis of soil disturbance. Synergism mechanism of subsoiler coupling with biomimetic structures and self-healing coating was analyzed in following. It depicted the guiding effect of biomimetic structure and the shield function of self-healing coating, resulting in anticorrosion and wear resistance of subsoiler. Keywords: soil types, tillage resistance, wear-corrosion, soil disturbance, self-healing DOI: 10.25165/j.ijabe.20231603.7876 Citation: Wang Y M, Lu C J, Chen J, Cui C H, Pan Y J, Pfleging W, et al. Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types. Int J Agric & Biol Eng, 2023; 16(3): 7–14.
深埋作为一种重要的免耕耕作方式,在世界各国得到了广泛的应用。为了节能和延长使用寿命,深耕器的耐耕性和耐磨性引起了人们的广泛关注。在本研究中,S- t - sk -2#仿生结构的深耕器(S表示深耕器;T表示时间;SK是指柄;2#, h/s=0.57, h=5 mm, α=45°),在2个季节、2个土壤性质不同的地点(黑壤土和粘土)和2 km/h和3.6 km/h的沉土速度下,对自愈涂层进行了研究。土壤含水量和密实度影响土壤的耐耕性和耐磨性。土中土壤的抗耕性和腐蚀程度均大于黑壤土。与S-T-SK-2#相比,在2 km/h的速度下,C-S-T-SK-2#(带自愈涂层的S-T-SK-2#)在粘土中的减耕率可达14.32%。回归方程结果的显著性检验表明,土壤类型和土壤性质对土壤扰动系数、全土层膨胀、犁盘体积有显著影响。对土壤扰动分析具有一定的指导意义。分析了深层土壤与仿生结构和自愈涂层耦合的协同作用机理。描述了仿生结构的引导作用和自愈涂层的屏蔽作用,从而实现了土壤的防腐耐磨。关键词:土壤类型,抗耕性,磨损腐蚀,土壤扰动,自愈DOI: 10.25165/ j.j ijabe.20231603.7876引用本文:王永明,卢春江,陈健,崔春华,潘玉杰,Pfleging W,等。自修复仿生深层土壤对不同土壤类型下土壤抗耕性能、耐磨性和扰动形态的影响农业与生物工程学报,2023;16(3): 7 - 14。
{"title":"Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types","authors":"Yueming Wang, Chenjie Lu, Jing Chen, Chenhuan Cui, Yijie Pan, Wilhelm Pfleging, Jiyu Sun","doi":"10.25165/j.ijabe.20231603.7876","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231603.7876","url":null,"abstract":"Subsoiling has been widely used all over the world as an important operation method of no-tillage farming. For energy-saving and life-extension, the tillage resistance and wear-corrosion of subsoilers have attracted wide attention. In this study, the tillage resistance, soil disturbance, wear and corrosion of subsoiler with S-T-SK-2# biomimetic structures (S means subsoiler; T means tine; SK means shank; 2#, h/s=0.57, h=5 mm and α=45°.) and self-healing coating under two seasons, two locations with different soil properties (black loam and clay soil) and subsoiling speeds (2 km/h and 3.6 km/h) were investigated. The soil moisture content and compactness affected the tillage resistance and wear-corrosion. The tillage resistance and degree of corrosion on all subsoilers were much larger in clay soil than that in black loam soil. Compared with S-T-SK-2#, the tillage reduction rate of C-S-T-SK-2# (S-T-SK-2# with self-healing coating) was up to 14.32% in clay soil under the speed of 2 km/h. The significance tests of regression equation results showed that subsoiler type and soil properties had a significant impact on soil disturbance coefficient, swelling of total soil layer, bulkiness of the plough pan. It is of a guiding significance for the analysis of soil disturbance. Synergism mechanism of subsoiler coupling with biomimetic structures and self-healing coating was analyzed in following. It depicted the guiding effect of biomimetic structure and the shield function of self-healing coating, resulting in anticorrosion and wear resistance of subsoiler. Keywords: soil types, tillage resistance, wear-corrosion, soil disturbance, self-healing DOI: 10.25165/j.ijabe.20231603.7876 Citation: Wang Y M, Lu C J, Chen J, Cui C H, Pan Y J, Pfleging W, et al. Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types. Int J Agric & Biol Eng, 2023; 16(3): 7–14.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135357562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic detection of sow estrus using a lightweight real-time detector and thermal images 使用轻型实时检测器和热图像自动检测母猪发情
2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231603.7711
Haibo Zheng, Hang Zhang, Shuang Song, Yue Wang, Tonghai Liu
{"title":"Automatic detection of sow estrus using a lightweight real-time detector and thermal images","authors":"Haibo Zheng, Hang Zhang, Shuang Song, Yue Wang, Tonghai Liu","doi":"10.25165/j.ijabe.20231603.7711","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231603.7711","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135361583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and testing of planting unit for rice dry-direct-seeding planter in cold region 寒区水稻旱作直播播种机种植装置的设计与试验
2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.7843
Jiale Zhao, Chengliang Zhang, Yanpeng Wei, Mingzhuo Guo, Chao Chen, Chongqin Zhang, Yungan Zhang
Rice dry-direct-seeding technology is a time-saving, cost-saving and efficient rice cultivation technique that increases the efficiency of seeding. In order to implement the specialization, light simplicity and scale of rice production, improve the level of mechanization of the whole rice production process, and solve the problems of uneven seed furrows, uneven number of seeds sown, shallow mulching and uncompact repression that occur during the promotion and application of dry-direct-seeding for rice in the cold region of northeast China. In this paper, a planting unit for rice dry-direct-seeding planter is designed. The working principles and structural parameters of the furrow opening components, the seeding apparatus and the soil covering-pressing device are described. The mechanical model of the key components of the seeding unit was established, and the forward speed, roller diameter and compacting strength were selected as the test factors. A three-factor, five-level quadratic rotation orthogonal combination test was conducted with the seed breakage rate, seeding depth qualification rate, seeding uniformity coefficient of variation and hole grain count qualification rate as the evaluation indexes. Field performance test and test results show that: at a forward speed of 4 km/h, a roller diameter of 427 mm and a compacting strength of 48.45 kPa, the seed breakage rate was 1.31%, the sowing depth qualification rate was 9.95%, the coefficient of variation of sowing uniformity was 3.75% and the number of holes was 86.75%. This accords with the agronomic requirements of dry-direct-seeding for rice and implements a combination of superior agronomy and modern farm machinery. Keywords: rice, dry-direct-seeding, planting unit, structural design, testing research DOI: 10.25165/j.ijabe.20231604.7843 Citation: Zhao J L, Zhang C L, Wei Y P, Guo M Z, Chen C, Zhang C Q, et al. Design and testing of planting unit for rice dry-direct-seeding planter in cold region. Int J Agric & Biol Eng, 2023; 16(4): 76-84
水稻干播技术是一种省时、节约成本、提高播种效率的水稻栽培技术。为实现水稻生产专业化、轻型化、规模化,提高水稻生产全过程机械化水平,解决东北寒区水稻旱作直播推广应用过程中出现的种沟不平整、播种数量不均匀、覆盖浅、压制不密实等问题。本文设计了一种水稻干播种机的播种装置。介绍了开沟部件、播种器和覆盖压土装置的工作原理和结构参数。建立了播种机关键部件的力学模型,选取前进速度、辊筒直径和压实强度作为试验因素。以碎种率、播深合格率、播种均匀变异系数和孔粒数合格率为评价指标,进行三因素五水平二次旋转正交组合试验。现场性能试验及试验结果表明:在前进速度为4 km/h、辊筒直径为427 mm、压实强度为48.45 kPa的条件下,种子破碎率为1.31%,播种深度合格率为9.95%,播种均匀度变异系数为3.75%,孔数为86.75%。这既符合水稻干播的农艺要求,又实现了优势农艺与现代农业机械的结合。关键词:水稻,旱作直播,种植单元,结构设计,试验研究DOI: 10.25165/ j.j ijabe.20231604.7843引用本文:赵建林,张春林,魏永平,郭明志,陈超,张春青,等。寒区水稻旱作直播播种机种植装置的设计与试验。农业与生物工程学报,2023;16 (4): 76 - 84
{"title":"Design and testing of planting unit for rice dry-direct-seeding planter in cold region","authors":"Jiale Zhao, Chengliang Zhang, Yanpeng Wei, Mingzhuo Guo, Chao Chen, Chongqin Zhang, Yungan Zhang","doi":"10.25165/j.ijabe.20231604.7843","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.7843","url":null,"abstract":"Rice dry-direct-seeding technology is a time-saving, cost-saving and efficient rice cultivation technique that increases the efficiency of seeding. In order to implement the specialization, light simplicity and scale of rice production, improve the level of mechanization of the whole rice production process, and solve the problems of uneven seed furrows, uneven number of seeds sown, shallow mulching and uncompact repression that occur during the promotion and application of dry-direct-seeding for rice in the cold region of northeast China. In this paper, a planting unit for rice dry-direct-seeding planter is designed. The working principles and structural parameters of the furrow opening components, the seeding apparatus and the soil covering-pressing device are described. The mechanical model of the key components of the seeding unit was established, and the forward speed, roller diameter and compacting strength were selected as the test factors. A three-factor, five-level quadratic rotation orthogonal combination test was conducted with the seed breakage rate, seeding depth qualification rate, seeding uniformity coefficient of variation and hole grain count qualification rate as the evaluation indexes. Field performance test and test results show that: at a forward speed of 4 km/h, a roller diameter of 427 mm and a compacting strength of 48.45 kPa, the seed breakage rate was 1.31%, the sowing depth qualification rate was 9.95%, the coefficient of variation of sowing uniformity was 3.75% and the number of holes was 86.75%. This accords with the agronomic requirements of dry-direct-seeding for rice and implements a combination of superior agronomy and modern farm machinery. Keywords: rice, dry-direct-seeding, planting unit, structural design, testing research DOI: 10.25165/j.ijabe.20231604.7843 Citation: Zhao J L, Zhang C L, Wei Y P, Guo M Z, Chen C, Zhang C Q, et al. Design and testing of planting unit for rice dry-direct-seeding planter in cold region. Int J Agric & Biol Eng, 2023; 16(4): 76-84","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135659788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles 智能农业中的数字孪生:用于自动农业车辆的基于汽车的模拟器
2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.8039
Xin Zhao, Wanli Wang, Long Wen, Zhibo Chen, Sixian Wu, Kun Zhou, Mengyao Sun, Lanjun Xu, Bingbing Hu, Caicong Wu
Digital twins can improve the level of control over physical entities and help manage complex systems by integrating a range of technologies. The autonomous agricultural machine has shown revolutionary effects on labor reduction and utilization rate in field works. Autonomous vehicles in precision agriculture have the potential to improve competitiveness compared to current crop production methods and have become a research hotspot. However, the development time and resources required in experiments have limited the research in this area. Simulation tools in unmanned farming that are required to enable more efficient, reliable, and safe autonomy are increasingly demanding. Inspired by the recent development of an open-source virtual simulation platform, this study proposed an autoware-based simulator to evaluate the performance of agricultural machine guidance based on digital twins. Oblique photogrammetry using drones is used to construct three-dimensional maps of fields at the same scale as reality. A communication format suitable for agricultural machines was developed for data input and output, along with an inter-node communication methodology. The conversion, publishing, and maintenance of multiple coordinate systems were completed based on ROS (Robot Operating System). Coverage path planning was performed using hybrid curves based on Bézier curves, and it was tested in both a simulation environment and actual fields with the aid of Pure Pursuit algorithms and PID controllers. Keywords: autoware, simulation platform, autonomous agricultural vehicle, digital twin; autonomous robots DOI: 10.25165/j.ijabe.20231604.8039 Citation: Zhao X, Wang W L, Wen L, Chen Z B, Wu S X, Zhou K, et al. Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles. Int J Agric & Biol Eng, 2023; 16(4): 185-190.
数字孪生可以提高对物理实体的控制水平,并通过集成一系列技术帮助管理复杂的系统。自主农业机械在减少劳动力和提高田间作业利用率方面发挥了革命性的作用。与目前的作物生产方式相比,精准农业中的自动驾驶汽车具有提高竞争力的潜力,已成为研究热点。然而,实验所需的开发时间和资源限制了这一领域的研究。为了实现更高效、可靠和安全的自主性,无人农场需要越来越多的仿真工具。受开源虚拟仿真平台最新发展的启发,本研究提出了一种基于数字孪生的自动仿真器,用于评估农机制导性能。使用无人机的倾斜摄影测量用于构建与现实相同比例尺的三维野外地图。开发了一种适合农业机械的数据输入和输出通信格式,以及节点间通信方法。基于ROS (Robot Operating System)完成多个坐标系的转换、发布和维护。采用基于bsamzier曲线的混合曲线进行覆盖路径规划,并结合Pure Pursuit算法和PID控制器在仿真环境和实际现场进行了测试。关键词:自动化软件,仿真平台,自动农用车,数字孪生;自主机器人DOI: 10.25165/ j.j ijabe.20231604.8039引用本文:赵鑫,王文林,文磊,陈志斌,吴世祥,周凯,等。智能农业中的数字孪生:用于自动农业车辆的基于汽车的模拟器。农业与生物工程学报,2023;16(4): 185 - 190。
{"title":"Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles","authors":"Xin Zhao, Wanli Wang, Long Wen, Zhibo Chen, Sixian Wu, Kun Zhou, Mengyao Sun, Lanjun Xu, Bingbing Hu, Caicong Wu","doi":"10.25165/j.ijabe.20231604.8039","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.8039","url":null,"abstract":"Digital twins can improve the level of control over physical entities and help manage complex systems by integrating a range of technologies. The autonomous agricultural machine has shown revolutionary effects on labor reduction and utilization rate in field works. Autonomous vehicles in precision agriculture have the potential to improve competitiveness compared to current crop production methods and have become a research hotspot. However, the development time and resources required in experiments have limited the research in this area. Simulation tools in unmanned farming that are required to enable more efficient, reliable, and safe autonomy are increasingly demanding. Inspired by the recent development of an open-source virtual simulation platform, this study proposed an autoware-based simulator to evaluate the performance of agricultural machine guidance based on digital twins. Oblique photogrammetry using drones is used to construct three-dimensional maps of fields at the same scale as reality. A communication format suitable for agricultural machines was developed for data input and output, along with an inter-node communication methodology. The conversion, publishing, and maintenance of multiple coordinate systems were completed based on ROS (Robot Operating System). Coverage path planning was performed using hybrid curves based on Bézier curves, and it was tested in both a simulation environment and actual fields with the aid of Pure Pursuit algorithms and PID controllers. Keywords: autoware, simulation platform, autonomous agricultural vehicle, digital twin; autonomous robots DOI: 10.25165/j.ijabe.20231604.8039 Citation: Zhao X, Wang W L, Wen L, Chen Z B, Wu S X, Zhou K, et al. Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles. Int J Agric & Biol Eng, 2023; 16(4): 185-190.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller 基于模糊pid的自行式电动分蘖机耕深控制系统设计与试验
2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.8116
Maohua Xiao, Ye Ma, Chen Wang, Junyun Chen, Yejun Zhu, Petr Bartos, Guosheng Geng
The research on the self-propelled electric tiller is vital for further improving the quality and efficiency of greenhouse rotary tillage operation, reducing the work intensity and operation risk of operators, and achieving environmentally friendly characteristics. Most of the existing self-propelled tillers rely on manual adjustment of the tillage depth. Moreover, the consistency and stability of the tillage depth are difficult to guarantee. In this study, the automatic control method of tillage depth of a self-propelled electric tiller is investigated. A method of applying the fuzzy PID (Proportional Integral Derivative) control method to the tillage depth adjustment system of a tiller is also proposed to realize automatic control. The system uses the real-time detection of the resistance sensor and angle sensor. The controller runs the electronically controlled hydraulic system to adjust the force and position comprehensively. The fuzzy control algorithm is used in the operation error control to realize the double-parameter control of the tillage depth. The simulation and experimental verification of the system are conducted. Results show that the control system applying fuzzy PID can improve the soil breaking rate by 3% in the operation process based on reducing the stability variation of tillage depth by 24%. The control strategy can reach the set value of tillage depth quickly and accurately. It can also meet the requirement of tillage depth consistency during the operation. Keywords: fuzzy PID, self-propelled electric tiller, tillage depth, electro-controlled hydraulic system, comprehensive adjustment of force and position DOI: 10.25165/j.ijabe.20231604.8116 Citation: Xiao M H, Ma Y, Wang C, Chen J Y, Zhu Y J, Bartos P, et al. Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller. Int J Agric & Biol Eng, 2023; 16(4): 116-125.
自走式电动分蘖机的研究对于进一步提高温室旋耕机作业质量和效率,降低操作人员的工作强度和操作风险,实现环境友好化具有重要意义。现有的自行式分蘖机大多依靠人工调节耕作深度。此外,耕作深度的一致性和稳定性难以保证。本文研究了自行式电动分蘖机的耕深自动控制方法。提出了一种将模糊PID(比例积分导数)控制方法应用于分蘖机耕深调节系统,实现自动控制的方法。该系统采用电阻传感器和角度传感器进行实时检测。控制器通过电控液压系统对力和位置进行综合调节。在操作误差控制中采用模糊控制算法,实现了耕作深度的双参数控制。对系统进行了仿真和实验验证。结果表明,采用模糊PID控制系统,在将耕深稳定性变化降低24%的基础上,可使操作过程中的破土率提高3%。该控制策略能快速、准确地达到耕深设定值。同时也能满足作业中对耕作深度一致性的要求。关键词:模糊PID,自走式电动分耕机,耕深,电控液压系统,力位综合调节[DOI: 10.25165/ j.j ijabe.20231604.8116]基于模糊pid的自行式电动分蘖机耕深控制系统设计与试验。农业与生物工程学报,2023;16(4): 116 - 125。
{"title":"Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller","authors":"Maohua Xiao, Ye Ma, Chen Wang, Junyun Chen, Yejun Zhu, Petr Bartos, Guosheng Geng","doi":"10.25165/j.ijabe.20231604.8116","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.8116","url":null,"abstract":"The research on the self-propelled electric tiller is vital for further improving the quality and efficiency of greenhouse rotary tillage operation, reducing the work intensity and operation risk of operators, and achieving environmentally friendly characteristics. Most of the existing self-propelled tillers rely on manual adjustment of the tillage depth. Moreover, the consistency and stability of the tillage depth are difficult to guarantee. In this study, the automatic control method of tillage depth of a self-propelled electric tiller is investigated. A method of applying the fuzzy PID (Proportional Integral Derivative) control method to the tillage depth adjustment system of a tiller is also proposed to realize automatic control. The system uses the real-time detection of the resistance sensor and angle sensor. The controller runs the electronically controlled hydraulic system to adjust the force and position comprehensively. The fuzzy control algorithm is used in the operation error control to realize the double-parameter control of the tillage depth. The simulation and experimental verification of the system are conducted. Results show that the control system applying fuzzy PID can improve the soil breaking rate by 3% in the operation process based on reducing the stability variation of tillage depth by 24%. The control strategy can reach the set value of tillage depth quickly and accurately. It can also meet the requirement of tillage depth consistency during the operation. Keywords: fuzzy PID, self-propelled electric tiller, tillage depth, electro-controlled hydraulic system, comprehensive adjustment of force and position DOI: 10.25165/j.ijabe.20231604.8116 Citation: Xiao M H, Ma Y, Wang C, Chen J Y, Zhu Y J, Bartos P, et al. Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller. Int J Agric & Biol Eng, 2023; 16(4): 116-125.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of black soil compaction with driver-agricultural machinery-soil system under corn sowing with high-power tractor in Northeast China 大功率拖拉机玉米播种黑土驾驶员-农机-土壤系统压实分析
2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.7284
Xiao Yang, Zhiqiang Zhai, Weijie Guo, Wenjie Li, Minli Yang, Zhenghe Song
Soil compaction leads to crop yield reduction in Northeast of China. The interaction mechanism of driver-agricultural machinery-black soil is not clear. A comprehensive field experiment of 4 hm2 of maize seeding was carried out in Baiquan County Cooperative. The results showed that the average increase rates of soil compaction before and after sowing were 118.82% and 71.02%. The SEM showed that waist fatigue had the greatest impact on soil compaction, and the unit fatigue of waist caused 1.51 and 1.27 unit compactions to the soil at the depths of 10 cm and 20 cm. The neck, waist, arm and leg fatigue of drivers increased the surface soil compaction by 1.83, 1.76, 1.78 and 1.55 units, and the deep soil compaction by 1.65, 1.58, 1.60 and 1.40 units. The results can provide a reference for the integration of human factor efficiency and conservation tillage. Keywords: agriculture ergonomics, structural equation model, black soil compaction, sowing, high-power tractor DOI: 10.25165/j.ijabe.20231604.7284 Citation: Yang X, Zhai Z Q, Guo W J, Li W J, Yang M L, Song Z H. Analysis of black soil compaction with driver-agricultural machinery-soil system under corn sowing with high-power tractor in Northeast China. Int J Agric & Bio Eng, 2023; 16(4): 168-173
土壤压实导致东北地区农作物减产。驾驶员-农机-黑土的相互作用机制尚不清楚。在百泉县合作社进行了4 hm2玉米播种综合大田试验。结果表明,播前、播后土壤压实度平均增幅分别为118.82%和71.02%。SEM结果表明,腰部疲劳对土壤压实的影响最大,在10 cm和20 cm深度,腰部单位疲劳对土壤压实的影响分别为1.51和1.27个单位。驾驶员颈部、腰部、手臂和腿部疲劳分别增加表层土壤压实1.83、1.76、1.78和1.55个单位,深层土壤压实1.65、1.58、1.60和1.40个单位。研究结果可为人因效率与保护性耕作的整合提供参考。关键词:农业工效学,结构方程模型,黑土压实,播种,大功率拖拉机[DOI: 10.25165/ j.j ijabe.20231604.7284]引用本文:杨欣,翟志强,郭文杰,李文杰,杨明林,宋志华。大功率拖拉机玉米播种黑土驾驶员-农机-土壤系统压实分析。农业与生物工程学报,2023;16 (4): 168 - 173
{"title":"Analysis of black soil compaction with driver-agricultural machinery-soil system under corn sowing with high-power tractor in Northeast China","authors":"Xiao Yang, Zhiqiang Zhai, Weijie Guo, Wenjie Li, Minli Yang, Zhenghe Song","doi":"10.25165/j.ijabe.20231604.7284","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.7284","url":null,"abstract":"Soil compaction leads to crop yield reduction in Northeast of China. The interaction mechanism of driver-agricultural machinery-black soil is not clear. A comprehensive field experiment of 4 hm2 of maize seeding was carried out in Baiquan County Cooperative. The results showed that the average increase rates of soil compaction before and after sowing were 118.82% and 71.02%. The SEM showed that waist fatigue had the greatest impact on soil compaction, and the unit fatigue of waist caused 1.51 and 1.27 unit compactions to the soil at the depths of 10 cm and 20 cm. The neck, waist, arm and leg fatigue of drivers increased the surface soil compaction by 1.83, 1.76, 1.78 and 1.55 units, and the deep soil compaction by 1.65, 1.58, 1.60 and 1.40 units. The results can provide a reference for the integration of human factor efficiency and conservation tillage. Keywords: agriculture ergonomics, structural equation model, black soil compaction, sowing, high-power tractor DOI: 10.25165/j.ijabe.20231604.7284 Citation: Yang X, Zhai Z Q, Guo W J, Li W J, Yang M L, Song Z H. Analysis of black soil compaction with driver-agricultural machinery-soil system under corn sowing with high-power tractor in Northeast China. Int J Agric & Bio Eng, 2023; 16(4): 168-173","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and test of the bilateral throwing soil-covering device for straw mulching machine in orchards 果园秸秆覆盖机双向抛覆装置的设计与试验
IF 2.4 2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231601.7010
Xinhua Zhu, Xianghe Gao, Xudong Li, Shaojie Xu
{"title":"Design and test of the bilateral throwing soil-covering device for straw mulching machine in orchards","authors":"Xinhua Zhu, Xianghe Gao, Xudong Li, Shaojie Xu","doi":"10.25165/j.ijabe.20231601.7010","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231601.7010","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"54 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72426716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny 改进YOLOv4-Tiny对圣女果的多类检测
IF 2.4 2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231602.7744
Fu Zhang, Zijun Chen, Shaukat Ali, Ning Yang, Sanling Fu, Yakun Zhang
: The rapid and accurate detection of cherry tomatoes is of great significance to realizing automatic picking by robots. However, so far, cherry tomatoes are detected as only one class for picking. Fruits occluded by branches or leaves are detected as pickable objects, which may cause damage to the plant or robot end-effector during picking. This study proposed the Feature Enhancement Network Block (FENB) based on YOLOv4-Tiny to solve the above problem. Firstly, according to the distribution characteristics and picking strategies of cherry tomatoes, cherry tomatoes were divided into four classes in the nighttime, and daytime included not occluded, occluded by branches, occluded by fruits, and occluded by leaves. Secondly, the CSPNet structure with the hybrid attention mechanism was used to design the FENB, which pays more attention to the effective features of different classes of cherry tomatoes while retaining the original features. Finally, the Feature Enhancement Network (FEN) was constructed based on the FENB to enhance the feature extraction ability and improve the detection accuracy of YOLOv4-Tiny. The experimental results show that under the confidence of 0.5, average precision (AP) of non-occluded, branch-occluded, fruit-occluded, and leaf-occluded fruit over the day test images were 95.86%, 92.59%, 89.66%, and 84.99%, respectively, which were 98.43%, 95.62%, 95.50%, and 89.33% on the night test images, respectively. The mean Average Precision (mAP) of four classes over the night test set was higher (94.72%) than that of the day (90.78%), which were both better than YOLOv4 and YOLOv4-Tiny. It cost 32.22 ms to process a 416×416 image on the GPU. The model size was 39.34 MB. Therefore, the proposed model can provide a practical and feasible method for the multi-class detection of cherry tomatoes.
快速准确的检测圣女果对实现机器人自动采摘具有重要意义。然而,到目前为止,检测到的圣女果只有一类可供采摘。被树枝或叶子遮挡的水果被检测为可采摘的物体,这可能会在采摘过程中对植物或机器人末端执行器造成损害。为了解决上述问题,本研究提出了基于YOLOv4-Tiny的Feature Enhancement Network Block (FENB)。首先,根据圣女果的分布特点和采摘策略,将圣女果夜间分为4类,白天分为未遮挡、树枝遮挡、果实遮挡和叶片遮挡;其次,采用带有混合注意机制的CSPNet结构设计FENB,在保留原有特征的同时,更加关注不同类别圣女果的有效特征;最后,基于特征增强网络构建特征增强网络(FEN),增强YOLOv4-Tiny的特征提取能力,提高检测精度。实验结果表明,在置信度为0.5的情况下,未遮挡、树枝遮挡、果实遮挡和叶片遮挡的果实在白天测试图像上的平均精度(AP)分别为95.86%、92.59%、89.66%和84.99%,在夜间测试图像上的平均精度(AP)分别为98.43%、95.62%、95.50%和89.33%。4个类别在夜间测试集的平均平均精度(mAP)(94.72%)高于白天测试集(90.78%),均优于YOLOv4和YOLOv4- tiny。在GPU上处理一个416×416图像需要32.22 ms。模型大小为39.34 MB,为圣女果的多类检测提供了一种实用可行的方法。
{"title":"Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny","authors":"Fu Zhang, Zijun Chen, Shaukat Ali, Ning Yang, Sanling Fu, Yakun Zhang","doi":"10.25165/j.ijabe.20231602.7744","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.7744","url":null,"abstract":": The rapid and accurate detection of cherry tomatoes is of great significance to realizing automatic picking by robots. However, so far, cherry tomatoes are detected as only one class for picking. Fruits occluded by branches or leaves are detected as pickable objects, which may cause damage to the plant or robot end-effector during picking. This study proposed the Feature Enhancement Network Block (FENB) based on YOLOv4-Tiny to solve the above problem. Firstly, according to the distribution characteristics and picking strategies of cherry tomatoes, cherry tomatoes were divided into four classes in the nighttime, and daytime included not occluded, occluded by branches, occluded by fruits, and occluded by leaves. Secondly, the CSPNet structure with the hybrid attention mechanism was used to design the FENB, which pays more attention to the effective features of different classes of cherry tomatoes while retaining the original features. Finally, the Feature Enhancement Network (FEN) was constructed based on the FENB to enhance the feature extraction ability and improve the detection accuracy of YOLOv4-Tiny. The experimental results show that under the confidence of 0.5, average precision (AP) of non-occluded, branch-occluded, fruit-occluded, and leaf-occluded fruit over the day test images were 95.86%, 92.59%, 89.66%, and 84.99%, respectively, which were 98.43%, 95.62%, 95.50%, and 89.33% on the night test images, respectively. The mean Average Precision (mAP) of four classes over the night test set was higher (94.72%) than that of the day (90.78%), which were both better than YOLOv4 and YOLOv4-Tiny. It cost 32.22 ms to process a 416×416 image on the GPU. The model size was 39.34 MB. Therefore, the proposed model can provide a practical and feasible method for the multi-class detection of cherry tomatoes.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"5 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72589477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nitrogen use in double cropping soybean with non-fertilized winter oilseed crops 双季大豆与冬季不施肥油料作物氮素利用
IF 2.4 2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231602.7547
Ronghao Liu, Stephen Gregg, A. Garcia y Garcia
{"title":"Nitrogen use in double cropping soybean with non-fertilized winter oilseed crops","authors":"Ronghao Liu, Stephen Gregg, A. Garcia y Garcia","doi":"10.25165/j.ijabe.20231602.7547","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.7547","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"48 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80167016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Downwash airflow field distribution characteristics and their effect on the spray field distribution of the DJI T30 six-rotor plant protection UAV 大疆T30六旋翼植保无人机下洗气流场分布特性及其对喷淋场分布的影响
IF 2.4 2区 农林科学 Q2 AGRICULTURAL ENGINEERING Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231602.8094
Haiyan Zhang, Sheng Wen, Chunling Chen, Q. Liu, Tongyu Xu, Shengde Chen, Y. Lan
: Spray characteristics are the fundamental factors that affect droplet transportation downward, deposition, and drift. The downwash airflow field of the Unmanned Aviation Vehicle (UAV) primarily influences droplet deposition and drift by changing the spray characteristics. This study focused mainly on the effect of the downwash airflow field of the UAV and nozzle position on the droplet spatial distribution and velocity distribution, which are two factors of spray characteristics. To study the abovementioned characteristics, computational fluid dynamics based on the lattice Boltzmann method (LBM) was used to simulate the downwash airflow field of the DJI T30 six-rotor plant protection UAV at different rotor rotational speeds (1000-1800 r/min). A particle image velocimetry system (PIV) was utilized to record the spray field with the downwash airflow field at different rotational speeds of rotors (0-1800 r/min) or different nozzle positions (0, 0.20 m, 0.35 m, and 0.50 m from the motor). The simulation and experimental results showed that the rotor downwash airflow field exhibited the ‘ dispersion-shrinkage-redispersion’ development rule. In the initial dispersion stage of rotor airflow, there were obvious high-vorticity and low-vorticity regions in the rotor downwash airflow field. Moreover, the low-vorticity region was primarily concentrated below the motor, and the high-vorticity region was mainly focused in the middle area of the rotors. Additionally, the Y -direction airflow velocity fluctuated at 0.4-1.2 m under the rotor. When the rotor airflow developed to 3.2 m below the rotor, the Y - direction airflow velocity showed a slight decrease. Above 3.2 m from the rotor, the Y -direction airflow velocity started to drastically decrease. Therefore, it is recommended that the DJI T30 plant protection UAV should not exceed 3.2 m in flight height during field spraying operations. The rotor downwash airflow field caused the nozzle atomization angle, droplet concentration, and spray field width to decrease while increasing the vortex scale in the spray field when the rotor system was activated. Moreover, the increase in rotor rotational speed promoted the abovementioned trend. When the nozzle was installed in various radial locations below the rotor, the droplet spatial distribution and velocity distribution were completely different. When the nozzle was installed directly below the motor, the droplet spatial distribution and velocity distribution were relatively symmetrical. When the nozzle was installed at 0.20 m and 0.35 m from the motor, the droplets clearly moved toward the right under the induction of stronger rotor vortices. This resulted in a higher droplet concentration in the right-half spray field. However, the droplet moved toward the left when the nozzle was installed in the rotor tip. For four nozzle positions, when the nozzle was installed at 0 or 0.20 m from the motor, the droplet average velocity was much higher. However, the droplet
:喷雾特性是影响液滴向下运移、沉积和漂移的根本因素。无人机的下洗气流场主要通过改变喷雾特性来影响液滴的沉积和漂移。本文主要研究了无人机下洗气流场和喷嘴位置对雾滴空间分布和速度分布的影响,这是影响喷雾特性的两个因素。为了研究上述特性,采用基于晶格玻尔兹曼方法(LBM)的计算流体力学方法,对大疆T30六旋翼植保无人机在不同旋翼转速(1000 ~ 1800 r/min)下的下洗气流场进行了仿真。利用粒子图像测速系统(PIV)记录不同转子转速(0 ~ 1800 r/min)和不同喷嘴位置(距离电机0、0.20 m、0.35 m、0.50 m)下洗气流场的喷雾场。仿真和实验结果表明,转子下洗气流场呈现“分散-收缩-再分散”的发展规律。在旋翼气流弥散初期,旋翼下洗气流场中存在明显的高涡度区和低涡度区。低涡度区主要集中在电机下方,高涡度区主要集中在转子中部。Y向气流速度在转子下方0.4 ~ 1.2 m处有波动。当转子气流发展到转子以下3.2 m时,Y方向气流速度略有下降。在距转子3.2 m以上,Y向气流速度开始急剧下降。因此,建议大疆T30植保无人机在进行田间喷洒作业时,飞行高度不要超过3.2 m。旋翼下洗气流场使旋翼系统启动时喷嘴雾化角减小,液滴浓度减小,喷雾场宽度减小,喷雾场涡流规模增大。而转子转速的增加则促进了上述趋势。当喷嘴安装在转子下方不同径向位置时,液滴的空间分布和速度分布完全不同。当喷嘴安装在电机正下方时,液滴的空间分布和速度分布相对对称。当喷嘴安装在距离电机0.20 m和0.35 m处时,液滴在较强转子涡的诱导下明显向右移动。这导致右半喷雾区液滴浓度较高。然而,当喷嘴安装在转子尖端时,液滴向左移动。对于四个喷嘴位置,当喷嘴安装在距离电机0或0.20 m处时,液滴的平均速度要高得多。而当喷嘴安装在另外两个位置时,液滴平均速度较慢。因此,建议将喷嘴安装在距离电机0或0.20 m处。研究结果可以加深对无人机下洗气流场分布特性及其对液滴空间分布和速度分布特性的影响的认识。同时,研究结果可为转子下方喷管位置的选择提供一定的理论指导。
{"title":"Downwash airflow field distribution characteristics and their effect on the spray field distribution of the DJI T30 six-rotor plant protection UAV","authors":"Haiyan Zhang, Sheng Wen, Chunling Chen, Q. Liu, Tongyu Xu, Shengde Chen, Y. Lan","doi":"10.25165/j.ijabe.20231602.8094","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.8094","url":null,"abstract":": Spray characteristics are the fundamental factors that affect droplet transportation downward, deposition, and drift. The downwash airflow field of the Unmanned Aviation Vehicle (UAV) primarily influences droplet deposition and drift by changing the spray characteristics. This study focused mainly on the effect of the downwash airflow field of the UAV and nozzle position on the droplet spatial distribution and velocity distribution, which are two factors of spray characteristics. To study the abovementioned characteristics, computational fluid dynamics based on the lattice Boltzmann method (LBM) was used to simulate the downwash airflow field of the DJI T30 six-rotor plant protection UAV at different rotor rotational speeds (1000-1800 r/min). A particle image velocimetry system (PIV) was utilized to record the spray field with the downwash airflow field at different rotational speeds of rotors (0-1800 r/min) or different nozzle positions (0, 0.20 m, 0.35 m, and 0.50 m from the motor). The simulation and experimental results showed that the rotor downwash airflow field exhibited the ‘ dispersion-shrinkage-redispersion’ development rule. In the initial dispersion stage of rotor airflow, there were obvious high-vorticity and low-vorticity regions in the rotor downwash airflow field. Moreover, the low-vorticity region was primarily concentrated below the motor, and the high-vorticity region was mainly focused in the middle area of the rotors. Additionally, the Y -direction airflow velocity fluctuated at 0.4-1.2 m under the rotor. When the rotor airflow developed to 3.2 m below the rotor, the Y - direction airflow velocity showed a slight decrease. Above 3.2 m from the rotor, the Y -direction airflow velocity started to drastically decrease. Therefore, it is recommended that the DJI T30 plant protection UAV should not exceed 3.2 m in flight height during field spraying operations. The rotor downwash airflow field caused the nozzle atomization angle, droplet concentration, and spray field width to decrease while increasing the vortex scale in the spray field when the rotor system was activated. Moreover, the increase in rotor rotational speed promoted the abovementioned trend. When the nozzle was installed in various radial locations below the rotor, the droplet spatial distribution and velocity distribution were completely different. When the nozzle was installed directly below the motor, the droplet spatial distribution and velocity distribution were relatively symmetrical. When the nozzle was installed at 0.20 m and 0.35 m from the motor, the droplets clearly moved toward the right under the induction of stronger rotor vortices. This resulted in a higher droplet concentration in the right-half spray field. However, the droplet moved toward the left when the nozzle was installed in the rotor tip. For four nozzle positions, when the nozzle was installed at 0 or 0.20 m from the motor, the droplet average velocity was much higher. However, the droplet","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"218 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80175732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
International Journal of Agricultural and Biological Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1