{"title":"Computation Offloading for Energy Efficiency Maximization of Sustainable Energy Supply Network in IIoT","authors":"Zhao Tong;Jinhui Cai;Jing Mei;Kenli Li;Keqin Li","doi":"10.1109/TSUSC.2023.3313770","DOIUrl":null,"url":null,"abstract":"The efficiency of production and equipment maintenance costs in the Industrial Internet of Things (IIoT) are directly impacted by equipment lifetime, making it an important concern. Mobile edge computing (MEC) can enhance network performance, extend device lifetime, and effectively reduce carbon emissions by integrating energy harvesting (EH) technology. However, when the two are combined, the coupling effect of energy and the system's communication resource management pose a great challenge to the development of computational offloading strategies. This paper investigates the problem of maximizing the energy efficiency of computation offloading in a two-tier MEC network powered by wireless power transfer (WPT). First, the corresponding mathematical models are developed for local computing, edge server processing, communication, and EH. The proposed fractional problem is transformed into a stochastic optimization problem by Dinkelbach method. In addition, virtual power queues are introduced to eliminate energy coupling effects by maintaining the stability of the battery power queues. Next, the problem is then resolved through the utilization of both Lyapunov optimization and convex optimization method. Consequently, a wireless energy transmission-based algorithm for maximizing energy efficiency is proposed. Finally, energy efficiency, an important parameter of network performance, is used as an indicator. The excellent performance of the EEMA-WET algorithm is verified through extensive extension and comparison experiments.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 2","pages":"128-140"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10246407/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The efficiency of production and equipment maintenance costs in the Industrial Internet of Things (IIoT) are directly impacted by equipment lifetime, making it an important concern. Mobile edge computing (MEC) can enhance network performance, extend device lifetime, and effectively reduce carbon emissions by integrating energy harvesting (EH) technology. However, when the two are combined, the coupling effect of energy and the system's communication resource management pose a great challenge to the development of computational offloading strategies. This paper investigates the problem of maximizing the energy efficiency of computation offloading in a two-tier MEC network powered by wireless power transfer (WPT). First, the corresponding mathematical models are developed for local computing, edge server processing, communication, and EH. The proposed fractional problem is transformed into a stochastic optimization problem by Dinkelbach method. In addition, virtual power queues are introduced to eliminate energy coupling effects by maintaining the stability of the battery power queues. Next, the problem is then resolved through the utilization of both Lyapunov optimization and convex optimization method. Consequently, a wireless energy transmission-based algorithm for maximizing energy efficiency is proposed. Finally, energy efficiency, an important parameter of network performance, is used as an indicator. The excellent performance of the EEMA-WET algorithm is verified through extensive extension and comparison experiments.