首页 > 最新文献

IEEE Transactions on Sustainable Computing最新文献

英文 中文
Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 具有量化效应的电力谐波的动态事件触发状态估计:区位集合成员方法
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-04-19 DOI: 10.1109/TSUSC.2024.3391733
Guhui Li;Zidong Wang;Xingzhen Bai;Zhongyi Zhao
This paper is concerned with the set-membership state estimation problem for power harmonics under quantization effects by using the dynamic event-triggered mechanism. The underlying system is subject to unknown but bounded noises that are confined to a sequence of zonotopes. The data transmissions are realized over a digital communication channel, where the measurement signals are quantized by a logarithmic-uniform quantizer before being transmitted from the sensors to the remote estimator. Moreover, a dynamic event-triggered mechanism is introduced to reduce the number of unnecessary data transmissions, thereby relieving the communication burden. The objective of this paper is to design a zonotopic set-membership estimator for power harmonics with guaranteed estimation performance in the simultaneous presence of: 1) unknown but bounded noises; 2) quantization effects; and 3) dynamic event-triggered executions. By resorting to the mathematical induction method, a unified set-membership estimation framework is established, within which a family of zonotopic sets is first derived that contains the estimation errors and, subsequently, the estimator gain matrices are designed by minimizing the $F$-radii of these zonotopic sets. The effectiveness of the proposed estimation scheme is verified by a series of simulation experiments.
本文利用动态事件触发机制,研究量化效应下的电力谐波集合成员状态估计问题。底层系统会受到未知但有界的噪声影响,这些噪声被限制在一连串的区位点上。数据传输是通过数字通信信道实现的,测量信号在从传感器传输到远程估计器之前由对数均匀量化器进行量化。此外,还引入了一种动态事件触发机制,以减少不必要的数据传输次数,从而减轻通信负担。本文的目的是设计一种用于电力谐波的区位集成员估计器,在同时存在以下情况时保证估计性能:1)未知但有界的噪声:1) 未知但有界的噪声;2) 量化效应;3) 动态事件触发执行。通过数学归纳法,建立了一个统一的集合隶属度估算框架,在此框架内,首先推导出包含估算误差的区opic集合族,然后通过最小化这些区opic集合的 $F$-radii 来设计估算器增益矩阵。一系列模拟实验验证了所提估计方案的有效性。
{"title":"Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach","authors":"Guhui Li;Zidong Wang;Xingzhen Bai;Zhongyi Zhao","doi":"10.1109/TSUSC.2024.3391733","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3391733","url":null,"abstract":"This paper is concerned with the set-membership state estimation problem for power harmonics under quantization effects by using the dynamic event-triggered mechanism. The underlying system is subject to unknown but bounded noises that are confined to a sequence of zonotopes. The data transmissions are realized over a digital communication channel, where the measurement signals are quantized by a logarithmic-uniform quantizer before being transmitted from the sensors to the remote estimator. Moreover, a dynamic event-triggered mechanism is introduced to reduce the number of unnecessary data transmissions, thereby relieving the communication burden. The objective of this paper is to design a zonotopic set-membership estimator for power harmonics with guaranteed estimation performance in the simultaneous presence of: 1) unknown but bounded noises; 2) quantization effects; and 3) dynamic event-triggered executions. By resorting to the mathematical induction method, a unified set-membership estimation framework is established, within which a family of zonotopic sets is first derived that contains the estimation errors and, subsequently, the estimator gain matrices are designed by minimizing the \u0000<inline-formula><tex-math>$F$</tex-math></inline-formula>\u0000-radii of these zonotopic sets. The effectiveness of the proposed estimation scheme is verified by a series of simulation experiments.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"803-813"},"PeriodicalIF":3.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Reviewers List 2024 年审稿人名单
IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-04-03 DOI: 10.1109/TSUSC.2024.3353082
{"title":"2024 Reviewers List","authors":"","doi":"10.1109/TSUSC.2024.3353082","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3353082","url":null,"abstract":"","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 2","pages":"230-233"},"PeriodicalIF":3.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490209","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing 移动边缘计算中的截止时间感知成本与能效卸载
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-26 DOI: 10.1109/TSUSC.2024.3381841
Mohit Kumar;Avadh Kishor;Pramod Kumar Singh;Kalka Dubey
The rapid advancement of mobile edge computing (MEC) has revolutionized the distributed computing landscape. With the help of MEC, the traditional centralized cloud computing architecture can be extended to the edge of networks, enabling real-time processing of resources and time-sensitive applications. Nevertheless, the problem of efficiently assigning the services to the computing resources is a challenging and prevalent issue due to the dynamic and distributed nature of the edge network's architecture. Thus, we require intelligent real-time decision-making and effective optimization algorithms to allocate resources, such as network bandwidth, memory, and CPU. This paper proposes an MEC architecture to allocate the resources in the network to optimize the quality of services (QoS). In this regard, the resource allocation problem is formulated as a bi-objective optimization problem, including minimizing cost and energy with quality and deadline constraints. A hybrid cascading-based meta-heuristic called GA-PSO is embedded with the proposed MEC architecture to achieve these objectives. Finally, it is compared with three existing approaches to establish its efficacy. The experimental results report statistically better cost and energy in all the considered instances, making it practical and validating its effectiveness.
移动边缘计算(MEC)的快速发展彻底改变了分布式计算的格局。在移动边缘计算的帮助下,传统的集中式云计算架构可以扩展到网络边缘,实现资源的实时处理和对时间敏感的应用。然而,由于边缘网络架构的动态和分布式特性,如何高效地为计算资源分配服务是一个具有挑战性的普遍问题。因此,我们需要智能的实时决策和有效的优化算法来分配资源,如网络带宽、内存和 CPU。本文提出了一种 MEC 架构来分配网络资源,以优化服务质量(QoS)。在这方面,资源分配问题被表述为一个双目标优化问题,包括在质量和截止日期约束下最小化成本和能量。为实现这些目标,将一种名为 GA-PSO 的基于级联的混合元启发式嵌入到所提出的 MEC 架构中。最后,将其与三种现有方法进行比较,以确定其有效性。实验结果表明,在所有考虑的实例中,该方法的成本和能耗在统计上都更高,因此非常实用并验证了其有效性。
{"title":"Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing","authors":"Mohit Kumar;Avadh Kishor;Pramod Kumar Singh;Kalka Dubey","doi":"10.1109/TSUSC.2024.3381841","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3381841","url":null,"abstract":"The rapid advancement of mobile edge computing (MEC) has revolutionized the distributed computing landscape. With the help of MEC, the traditional centralized cloud computing architecture can be extended to the edge of networks, enabling real-time processing of resources and time-sensitive applications. Nevertheless, the problem of efficiently assigning the services to the computing resources is a challenging and prevalent issue due to the dynamic and distributed nature of the edge network's architecture. Thus, we require intelligent real-time decision-making and effective optimization algorithms to allocate resources, such as network bandwidth, memory, and CPU. This paper proposes an MEC architecture to allocate the resources in the network to optimize the quality of services (QoS). In this regard, the resource allocation problem is formulated as a bi-objective optimization problem, including minimizing cost and energy with quality and deadline constraints. A hybrid cascading-based meta-heuristic called GA-PSO is embedded with the proposed MEC architecture to achieve these objectives. Finally, it is compared with three existing approaches to establish its efficacy. The experimental results report statistically better cost and energy in all the considered instances, making it practical and validating its effectiveness.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"778-789"},"PeriodicalIF":3.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers 气冷式热带数据中心温度和相对湿度上升的影响
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-20 DOI: 10.1109/TSUSC.2024.3379550
Duc Van Le;Jing Zhou;Rongrong Wang;Rui Tan;Fei Duan
Data centers (DCs) are power-intensive facilities which use a significant amount of energy for cooling the servers. Increasing the temperature and relative humidity (RH) setpoints is a rule-of-thumb approach to reducing the DC energy usage. However, the high temperature and RH may undermine the server's reliability. Before we can choose the proper temperature and RH settings, it is essential to understand how the temperature and RH setpoints affect the DC power usage and server's reliability. To this end, we constructed and experimented with an air-cooled DC testbed in Singapore, which consists of a direct expansion cooling system and 521 servers running real-world application workloads. This paper presents the key measurement results and observations from our 11-month experiments. Our results suggest that by operating at a supply air temperature setpoints of 29$^{circ }$C, our testbed achieves substantial cooling power saving with little impact on the server's reliability. Furthermore, we present a total cost of ownership (TCO) analysis framework which guides settings of the temperature and RH for a DC. Our observations and TCO analysis framework will be useful to future efforts in building and operating air-cooled DCs in tropics and beyond.
数据中心(DC)是电力密集型设施,需要消耗大量能源来冷却服务器。提高温度和相对湿度(RH)设定值是减少 DC 能源消耗的一个常用方法。然而,高温和相对湿度可能会降低服务器的可靠性。在选择合适的温度和相对湿度设置之前,我们必须了解温度和相对湿度设置点如何影响直流电能使用和服务器的可靠性。为此,我们在新加坡建造了一个风冷直流试验台并进行了实验,该试验台由直接膨胀冷却系统和运行实际应用工作负载的 521 台服务器组成。本文介绍了为期 11 个月实验的主要测量结果和观察结果。我们的结果表明,通过在 29$^{circ }$C 的供气温度设定值下运行,我们的测试平台实现了大量的制冷节能,而对服务器的可靠性影响很小。此外,我们还提出了一个总拥有成本(TCO)分析框架,用于指导直流电的温度和相对湿度设置。我们的观察结果和总拥有成本分析框架将有助于今后在热带地区及其他地区建造和运行风冷直流电。
{"title":"Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers","authors":"Duc Van Le;Jing Zhou;Rongrong Wang;Rui Tan;Fei Duan","doi":"10.1109/TSUSC.2024.3379550","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3379550","url":null,"abstract":"Data centers (DCs) are power-intensive facilities which use a significant amount of energy for cooling the servers. Increasing the temperature and relative humidity (RH) setpoints is a rule-of-thumb approach to reducing the DC energy usage. However, the high temperature and RH may undermine the server's reliability. Before we can choose the proper temperature and RH settings, it is essential to understand how the temperature and RH setpoints affect the DC power usage and server's reliability. To this end, we constructed and experimented with an air-cooled DC testbed in Singapore, which consists of a direct expansion cooling system and 521 servers running real-world application workloads. This paper presents the key measurement results and observations from our 11-month experiments. Our results suggest that by operating at a supply air temperature setpoints of 29\u0000<inline-formula><tex-math>$^{circ }$</tex-math></inline-formula>\u0000C, our testbed achieves substantial cooling power saving with little impact on the server's reliability. Furthermore, we present a total cost of ownership (TCO) analysis framework which guides settings of the temperature and RH for a DC. Our observations and TCO analysis framework will be useful to future efforts in building and operating air-cooled DCs in tropics and beyond.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"790-802"},"PeriodicalIF":3.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Timed-Release E-Voting Scheme Based on Paillier Homomorphic Encryption 基于派利尔同态加密的定时释放电子投票方案
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-08 DOI: 10.1109/TSUSC.2024.3371544
Ke Yuan;Peng Sang;Jian Ge;Bingcai Zhou;Chunfu Jia
E-Voting is widely used in many social, economic, political and cultural fields for its convenience, efficiency and greenness, but how to guarantee the fairness of e-voting and the controllability of human intervention needs further in-depth research and exploration. Although the introduction of homomorphic encryption algorithm solves the problem of ballot privacy calculation, and most of these schemes solve the problem of private key confidentiality by using or overlaying multiple different methods of saving private keys, its security will be questioned as long as there is a possibility of human intervention in the saving process. To solve this problem, we propose a timed-release e-voting scheme based on Paillier homomorphic encryption. We analyze the semantic security of the ballot formally by defining the security game, and realize the legitimacy check of the ballot ciphertext through the idea of partial knowledge proof. Property analysis shows that this scheme satisfies the basic properties of the security requirements of the e-voting scheme. Performance analysis shows that this scheme is feasible to implement in practical voting.
电子投票以其便捷、高效、绿色等特点被广泛应用于社会、经济、政治、文化等诸多领域,但如何保证电子投票的公平性和人为干预的可控性还需要进一步深入研究和探索。虽然同态加密算法的引入解决了选票隐私计算的问题,而且这些方案大多通过使用或叠加多种不同的私钥保存方式解决了私钥保密的问题,但只要在保存过程中存在人为干预的可能,其安全性就会受到质疑。为了解决这个问题,我们提出了一种基于 Paillier 同态加密的定时释放电子投票方案。我们通过定义安全博弈正式分析了选票的语义安全性,并通过部分知识证明的思想实现了选票密文的合法性检查。属性分析表明,该方案满足电子投票方案安全要求的基本属性。性能分析表明,该方案在实际投票中是可行的。
{"title":"A Timed-Release E-Voting Scheme Based on Paillier Homomorphic Encryption","authors":"Ke Yuan;Peng Sang;Jian Ge;Bingcai Zhou;Chunfu Jia","doi":"10.1109/TSUSC.2024.3371544","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3371544","url":null,"abstract":"E-Voting is widely used in many social, economic, political and cultural fields for its convenience, efficiency and greenness, but how to guarantee the fairness of e-voting and the controllability of human intervention needs further in-depth research and exploration. Although the introduction of homomorphic encryption algorithm solves the problem of ballot privacy calculation, and most of these schemes solve the problem of private key confidentiality by using or overlaying multiple different methods of saving private keys, its security will be questioned as long as there is a possibility of human intervention in the saving process. To solve this problem, we propose a timed-release e-voting scheme based on Paillier homomorphic encryption. We analyze the semantic security of the ballot formally by defining the security game, and realize the legitimacy check of the ballot ciphertext through the idea of partial knowledge proof. Property analysis shows that this scheme satisfies the basic properties of the security requirements of the e-voting scheme. Performance analysis shows that this scheme is feasible to implement in practical voting.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"740-753"},"PeriodicalIF":3.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Robust and Privacy-Aware Federated Learning Framework for Non-Intrusive Load Monitoring 用于非侵入式负载监控的稳健且注重隐私的联合学习框架
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-02-28 DOI: 10.1109/TSUSC.2024.3370837
Vidushi Agarwal;Omid Ardakanian;Sujata Pal
With the rollout of smart meters, a vast amount of energy time-series became available from homes, enabling applications such as non-intrusive load monitoring (NILM). The inconspicuous collection of this data, however, poses a risk to the privacy of customers. Federated Learning (FL) eliminates the problem of sharing raw data with a cloud service provider by allowing machine learning models to be trained in a collaborative fashion on decentralized data. Although several NILM techniques that rely on FL to train a deep neural network for identifying the energy consumption of individual appliances have been proposed in recent years, the robustness of these techniques to malicious users and their ability to fully protect the user privacy remain unexplored. In this paper, we present a robust and privacy-preserving FL-based framework to train a bidirectional transformer architecture for NILM. This framework takes advantage of a meta-learning algorithm to handle the data heterogeneity prevalent in real-world settings. The efficacy of the proposed framework is corroborated through comparative experiments using two real-world NILM datasets. The results show that this framework can attain an accuracy that is on par with a centrally-trained energy disaggregation model, while preserving user privacy.
随着智能电表的推广,人们可以从家庭中获取大量的能源时间序列,从而实现非侵入式负荷监控(NILM)等应用。然而,这些数据的收集并不显眼,会对客户的隐私造成威胁。联合学习(FL)允许机器学习模型以协作方式在分散数据上进行训练,从而消除了与云服务提供商共享原始数据的问题。虽然近年来已经提出了几种依赖 FL 来训练深度神经网络以识别单个电器能耗的 NILM 技术,但这些技术对恶意用户的鲁棒性以及全面保护用户隐私的能力仍有待探索。在本文中,我们提出了一种基于 FL 的稳健且保护隐私的框架,用于训练 NILM 的双向变压器架构。该框架利用元学习算法来处理现实世界中普遍存在的数据异质性问题。通过使用两个真实世界的 NILM 数据集进行对比实验,证实了所提框架的功效。结果表明,该框架可以达到与集中训练的能量分解模型相当的准确度,同时还能保护用户隐私。
{"title":"A Robust and Privacy-Aware Federated Learning Framework for Non-Intrusive Load Monitoring","authors":"Vidushi Agarwal;Omid Ardakanian;Sujata Pal","doi":"10.1109/TSUSC.2024.3370837","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3370837","url":null,"abstract":"With the rollout of smart meters, a vast amount of energy time-series became available from homes, enabling applications such as non-intrusive load monitoring (NILM). The inconspicuous collection of this data, however, poses a risk to the privacy of customers. Federated Learning (FL) eliminates the problem of sharing raw data with a cloud service provider by allowing machine learning models to be trained in a collaborative fashion on decentralized data. Although several NILM techniques that rely on FL to train a deep neural network for identifying the energy consumption of individual appliances have been proposed in recent years, the robustness of these techniques to malicious users and their ability to fully protect the user privacy remain unexplored. In this paper, we present a robust and privacy-preserving FL-based framework to train a bidirectional transformer architecture for NILM. This framework takes advantage of a meta-learning algorithm to handle the data heterogeneity prevalent in real-world settings. The efficacy of the proposed framework is corroborated through comparative experiments using two real-world NILM datasets. The results show that this framework can attain an accuracy that is on par with a centrally-trained energy disaggregation model, while preserving user privacy.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"766-777"},"PeriodicalIF":3.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SCROOGEVM: Boosting Cloud Resource Utilization With Dynamic Oversubscription SCROOGEVM:利用动态超额订购提高云资源利用率
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-02-23 DOI: 10.1109/TSUSC.2024.3369333
Pierre Jacquet;Thomas Ledoux;Romain Rouvoy
Despite continuous improvements, cloud physical resources remain underused, hence severely impacting the efficiency of these infrastructures at large. To overcome this inefficiency, Infrastructure-as-a-Service (IaaS) providers usually compensate for oversized Virtual Machines (VMs) by offering more virtual resources than are physically available on a host. However, this technique—known as oversubscription—may hinder performances when a statically-defined oversubscription ratio results in resource contention of hosted VMs. Therefore, instead of setting a static and cluster-wide ratio, this article studies how a greedy increase of the oversubscription ratio per Physical Machine (PM) and resources type can preserve performance goals. Keeping performance unchanged allows our contribution to be more realistically adopted by production-scale IaaS infrastructures. This contribution, named ScroogeVM, leverages the detection of PM stability to carefully increase the associated oversubscription ratios. Based on metrics shared by public cloud providers, we investigate the impact of resource oversubscription on performance degradation. Subsequently, we conduct a comparative analysis of ScroogeVM with state-of-the-art oversubscription computations. The results demonstrate that our approach outperforms existing methods by leveraging the presence of long-lasting VMs, while avoiding live migration penalties and performance impacts for stakeholders.
尽管不断改进,但云物理资源仍未得到充分利用,从而严重影响了这些基础设施的整体效率。为了克服这种效率低下的问题,基础设施即服务(IaaS)提供商通常通过提供比主机上物理可用资源更多的虚拟资源来补偿过大的虚拟机(VM)。然而,当静态定义的超额认购比率导致托管虚拟机出现资源争用时,这种被称为超额认购的技术可能会影响性能。因此,本文研究了如何通过贪婪地提高每台物理机(PM)和每种资源类型的超量订购比例来保持性能目标,而不是设置一个静态的、全集群范围的比例。在保持性能不变的情况下,我们的贡献可以更现实地应用于生产规模的 IaaS 基础设施。这项贡献被命名为 ScroogeVM,它利用对 PM 稳定性的检测,谨慎地提高相关的超额订购比率。基于公共云提供商共享的指标,我们研究了资源超额订购对性能下降的影响。随后,我们对 ScroogeVM 与最先进的超额订购计算方法进行了比较分析。结果表明,我们的方法利用了持久虚拟机的存在,同时避免了实时迁移惩罚和对利益相关者的性能影响,因此优于现有方法。
{"title":"SCROOGEVM: Boosting Cloud Resource Utilization With Dynamic Oversubscription","authors":"Pierre Jacquet;Thomas Ledoux;Romain Rouvoy","doi":"10.1109/TSUSC.2024.3369333","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3369333","url":null,"abstract":"Despite continuous improvements, cloud physical resources remain underused, hence severely impacting the efficiency of these infrastructures at large. To overcome this inefficiency, Infrastructure-as-a-Service (IaaS) providers usually compensate for oversized Virtual Machines (VMs) by offering more virtual resources than are physically available on a host. However, this technique—known as \u0000<italic>oversubscription</i>\u0000—may hinder performances when a statically-defined oversubscription ratio results in resource contention of hosted VMs. Therefore, instead of setting a static and cluster-wide ratio, this article studies how a greedy increase of the oversubscription ratio per Physical Machine (PM) and resources type can preserve performance goals. Keeping performance unchanged allows our contribution to be more realistically adopted by production-scale IaaS infrastructures. This contribution, named \u0000<sc>ScroogeVM</small>\u0000, leverages the detection of PM stability to carefully increase the associated oversubscription ratios. Based on metrics shared by public cloud providers, we investigate the impact of resource oversubscription on performance degradation. Subsequently, we conduct a comparative analysis of \u0000<sc>ScroogeVM</small>\u0000 with state-of-the-art oversubscription computations. The results demonstrate that our approach outperforms existing methods by leveraging the presence of long-lasting VMs, while avoiding live migration penalties and performance impacts for stakeholders.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"754-765"},"PeriodicalIF":3.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockchain for Energy Credits and Certificates: A Comprehensive Review 用于能源积分和证书的区块链:全面回顾
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-02-16 DOI: 10.1109/TSUSC.2024.3366502
Syed Muhammad Danish;Kaiwen Zhang;Fatima Amara;Juan Carlos Oviedo Cepeda;Luis Fernando Rueda Vasquez;Tom Marynowski
Climate change is a major issue that has disastrous impacts on the environment through different causes like the greenhouse gas (GHG) emission. Many energy utilities around the world intend to reduce GHG emissions by promoting different systems including carbon emission trading (CET), renewable energy certificates (RECs), and tradable white certificates (TWCs). However, these systems are centralized, highly regulated, and operationally expensive and do not meet transparency, trust and security requirements. Accordingly, GHG emission reduction schemes are gradually moving towards blockchain-based solutions due to their underpinning characteristics including decentralization, transparency, anonymity, and trust (independent from third parties). This paper performs a comprehensive investigation into the blockchain technology, deployed for GHG emission reduction plans. It explores existing blockchain solutions along with their associated challenges to effectively uncover their potentials. As a result, this study suggests possible lines of research for future enhancements of blockchain systems particularly their incorporation in GHG emission reduction.
气候变化是一个重大问题,它通过温室气体排放等不同原因对环境造成灾难性影响。全球许多能源公用事业公司打算通过推广不同的系统来减少温室气体排放,包括碳排放交易(CET)、可再生能源证书(RECs)和可交易白色证书(TWCs)。然而,这些系统都是集中式的,受到高度管制,运行成本高,而且不符合透明度、信任度和安全性的要求。因此,温室气体减排计划正逐渐转向基于区块链的解决方案,因为区块链具有去中心化、透明、匿名和信任(独立于第三方)等基本特征。本文对用于温室气体减排计划的区块链技术进行了全面调查。它探讨了现有的区块链解决方案及其相关挑战,以有效发掘其潜力。因此,本研究为区块链系统未来的改进,特别是将其纳入温室气体减排提出了可能的研究方向。
{"title":"Blockchain for Energy Credits and Certificates: A Comprehensive Review","authors":"Syed Muhammad Danish;Kaiwen Zhang;Fatima Amara;Juan Carlos Oviedo Cepeda;Luis Fernando Rueda Vasquez;Tom Marynowski","doi":"10.1109/TSUSC.2024.3366502","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3366502","url":null,"abstract":"Climate change is a major issue that has disastrous impacts on the environment through different causes like the greenhouse gas (GHG) emission. Many energy utilities around the world intend to reduce GHG emissions by promoting different systems including carbon emission trading (CET), renewable energy certificates (RECs), and tradable white certificates (TWCs). However, these systems are centralized, highly regulated, and operationally expensive and do not meet transparency, trust and security requirements. Accordingly, GHG emission reduction schemes are gradually moving towards blockchain-based solutions due to their underpinning characteristics including decentralization, transparency, anonymity, and trust (independent from third parties). This paper performs a comprehensive investigation into the blockchain technology, deployed for GHG emission reduction plans. It explores existing blockchain solutions along with their associated challenges to effectively uncover their potentials. As a result, this study suggests possible lines of research for future enhancements of blockchain systems particularly their incorporation in GHG emission reduction.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"727-739"},"PeriodicalIF":3.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DRLCAP: Runtime GPU Frequency Capping With Deep Reinforcement Learning DRLCAP:运行时 GPU 频率上限与深度强化学习
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-02-06 DOI: 10.1109/TSUSC.2024.3362697
Yiming Wang;Meng Hao;Hui He;Weizhe Zhang;Qiuyuan Tang;Xiaoyang Sun;Zheng Wang
Power and energy consumption is the limiting factor of modern computing systems. As the GPU becomes a mainstream computing device, power management for GPUs becomes increasingly important. Current works focus on GPU kernel-level power management, with challenges in portability due to architecture-specific considerations. We present DRLCap, a general runtime power management framework intended to support power management across various GPU architectures. It periodically monitors system-level information to dynamically detect program phase changes and model the workload and GPU system behavior. This elimination from kernel-specific constraints enhances adaptability and responsiveness. The framework leverages dynamic GPU frequency capping, which is the most widely used power knob, to control the power consumption. DRLCap employs deep reinforcement learning (DRL) to adapt to the changing of program phases by automatically adjusting its power policy through online learning, aiming to reduce the GPU power consumption without significantly compromising the application performance. We evaluate DRLCap on three NVIDIA and one AMD GPU architectures. Experimental results show that DRLCap improves prior GPU power optimization strategies by a large margin. On average, it reduces the GPU energy consumption by 22% with less than 3% performance slowdown on NVIDIA GPUs. This translates to a 20% improvement in the energy efficiency measured by the energy-delay product (EDP) over the NVIDIA default GPU power management strategy. For the AMD GPU architecture, DRLCap saves energy consumption by 10%, on average, with a 4% percentage loss, and improves energy efficiency by 8%.
功耗和能耗是现代计算系统的限制因素。随着 GPU 成为主流计算设备,GPU 的电源管理变得越来越重要。目前的工作主要集中在 GPU 内核级电源管理上,由于特定架构的考虑,在可移植性方面存在挑战。我们提出的 DRLCap 是一个通用运行时电源管理框架,旨在支持各种 GPU 架构的电源管理。它定期监控系统级信息,动态检测程序阶段的变化,并对工作负载和 GPU 系统行为进行建模。这种消除特定于内核的限制的方法增强了适应性和响应能力。该框架利用动态 GPU 频率上限(这是最广泛使用的功耗旋钮)来控制功耗。DRLCap 采用深度强化学习(DRL)技术,通过在线学习自动调整功耗策略,以适应程序阶段的变化,从而在不明显影响应用程序性能的情况下降低 GPU 功耗。我们在三种英伟达(NVIDIA)和一种 AMD GPU 架构上对 DRLCap 进行了评估。实验结果表明,DRLCap 大大改进了之前的 GPU 功耗优化策略。在英伟达™(NVIDIA®)图形处理器上,DRLCap 平均降低了 22% 的 GPU 能耗,而性能降低不到 3%。与英伟达™(NVIDIA®)默认的 GPU 电源管理策略相比,这意味着以能量-延迟积(EDP)衡量的能效提高了 20%。对于 AMD GPU 架构,DRLCap 平均可节省 10% 的能耗,损失百分比为 4%,能效提高了 8%。
{"title":"DRLCAP: Runtime GPU Frequency Capping With Deep Reinforcement Learning","authors":"Yiming Wang;Meng Hao;Hui He;Weizhe Zhang;Qiuyuan Tang;Xiaoyang Sun;Zheng Wang","doi":"10.1109/TSUSC.2024.3362697","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3362697","url":null,"abstract":"Power and energy consumption is the limiting factor of modern computing systems. As the GPU becomes a mainstream computing device, power management for GPUs becomes increasingly important. Current works focus on GPU kernel-level power management, with challenges in portability due to architecture-specific considerations. We present \u0000<sc>DRLCap</small>\u0000, a general runtime power management framework intended to support power management across various GPU architectures. It periodically monitors system-level information to dynamically detect program phase changes and model the workload and GPU system behavior. This elimination from kernel-specific constraints enhances adaptability and responsiveness. The framework leverages dynamic GPU frequency capping, which is the most widely used power knob, to control the power consumption. \u0000<sc>DRLCap</small>\u0000 employs deep reinforcement learning (DRL) to adapt to the changing of program phases by automatically adjusting its power policy through online learning, aiming to reduce the GPU power consumption without significantly compromising the application performance. We evaluate \u0000<sc>DRLCap</small>\u0000 on three NVIDIA and one AMD GPU architectures. Experimental results show that \u0000<sc>DRLCap</small>\u0000 improves prior GPU power optimization strategies by a large margin. On average, it reduces the GPU energy consumption by 22% with less than 3% performance slowdown on NVIDIA GPUs. This translates to a 20% improvement in the energy efficiency measured by the energy-delay product (EDP) over the NVIDIA default GPU power management strategy. For the AMD GPU architecture, \u0000<sc>DRLCap</small>\u0000 saves energy consumption by 10%, on average, with a 4% percentage loss, and improves energy efficiency by 8%.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"712-726"},"PeriodicalIF":3.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Outsourced Data Audit Scheme for Merkle Hash Grid-Based Fog Storage With Privacy-Preserving 具有隐私保护功能的基于 Merkle 哈希网格的雾存储动态外包数据审计方案
IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-02-05 DOI: 10.1109/TSUSC.2024.3362074
Ke Gu;XingQiang Wang;Xiong Li
The security of fog computing has been researched and concerned with its development, where malicious attacks pose a greater threat to distributed data storage based on fog computing. Also, the rapid increasing on the number of terminal devices has raised the importance of fog computing-based distributed data storage. In response to this demand, it is essential to establish a secure and privacy-preserving distributed data auditing method that enables security protection of stored data and effective control over identities of auditors. In this paper, we propose a dynamic outsourced data audit scheme for Merkle hash grid-based fog storage with privacy-preserving, where fog servers are used to undertake partial outsourced computation and data storage. Our scheme can provide the function of privacy-preserving for outsourced data by blinding original stored data, and supports data owners to define their auditing access policies by the linear secret-sharing scheme to control the identities of auditors. Further, the construction of Merkle hash grid is used to improve the efficiency of dynamic data operations. Also, a server locating approach is proposed to enable the third-part auditor to identify specific malicious data fog servers within distributed data storage. Under the proposed security model, the security of our scheme can be proved, which can further provide collusion resistance and privacy-preserving for outsourced data. Additionally, both theoretical and experimental evaluations illustrate the efficiency of our proposed scheme.
随着雾计算的发展,人们对雾计算的安全性进行了研究和关注,其中恶意攻击对基于雾计算的分布式数据存储构成了更大的威胁。此外,终端设备数量的快速增长也提高了基于雾计算的分布式数据存储的重要性。针对这一需求,必须建立一种安全且保护隐私的分布式数据审计方法,以实现对存储数据的安全保护和对审计人员身份的有效控制。本文提出了一种基于 Merkle 哈希网格的雾存储动态外包数据审计方案,利用雾服务器承担部分外包计算和数据存储,具有隐私保护功能。我们的方案可以通过屏蔽原始存储数据来为外包数据提供隐私保护功能,并支持数据所有者通过线性秘密共享方案来定义审计访问策略,从而控制审计人员的身份。此外,还利用 Merkle 哈希网格的构建提高了动态数据操作的效率。同时,还提出了一种服务器定位方法,使第三部分审计员能够识别分布式数据存储中特定的恶意数据雾服务器。在所提出的安全模型下,我们的方案的安全性得到了证明,可以进一步为外包数据提供抗串通和隐私保护功能。此外,理论和实验评估都说明了我们提出的方案的效率。
{"title":"Dynamic Outsourced Data Audit Scheme for Merkle Hash Grid-Based Fog Storage With Privacy-Preserving","authors":"Ke Gu;XingQiang Wang;Xiong Li","doi":"10.1109/TSUSC.2024.3362074","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3362074","url":null,"abstract":"The security of fog computing has been researched and concerned with its development, where malicious attacks pose a greater threat to distributed data storage based on fog computing. Also, the rapid increasing on the number of terminal devices has raised the importance of fog computing-based distributed data storage. In response to this demand, it is essential to establish a secure and privacy-preserving distributed data auditing method that enables security protection of stored data and effective control over identities of auditors. In this paper, we propose a dynamic outsourced data audit scheme for Merkle hash grid-based fog storage with privacy-preserving, where fog servers are used to undertake partial outsourced computation and data storage. Our scheme can provide the function of privacy-preserving for outsourced data by blinding original stored data, and supports data owners to define their auditing access policies by the linear secret-sharing scheme to control the identities of auditors. Further, the construction of Merkle hash grid is used to improve the efficiency of dynamic data operations. Also, a server locating approach is proposed to enable the third-part auditor to identify specific malicious data fog servers within distributed data storage. Under the proposed security model, the security of our scheme can be proved, which can further provide collusion resistance and privacy-preserving for outsourced data. Additionally, both theoretical and experimental evaluations illustrate the efficiency of our proposed scheme.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"695-711"},"PeriodicalIF":3.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Sustainable Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1