Pub Date : 2024-12-11DOI: 10.1109/TSUSC.2024.3415951
Zhongwen Guo;Hui Xia;Yu Wang;Radhouane Chouchane
{"title":"Guest Editorial of the Special Section on AI Powered Edge Computing for IoT","authors":"Zhongwen Guo;Hui Xia;Yu Wang;Radhouane Chouchane","doi":"10.1109/TSUSC.2024.3415951","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3415951","url":null,"abstract":"","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"814-816"},"PeriodicalIF":3.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10791341","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anomaly detection plays a vital role as a crucial security measure for edge devices in Artificial Intelligence and Internet of Things (AIoT). With the rapid development of IoT (Internet of Things), changes in system configurations and the introduction of new devices can lead to significant alterations in device relationships and data flows within the IoT, thereby triggering concept drift. Previously trained anomaly detection models fail to adapt to the changed distribution of streaming data, resulting in a high number of false positive events. This paper aims to address the issue of concept drift in IoT anomaly detection by proposing a comprehensive Concept Drift Detection, Interpretation, and Adaptation framework (CDDIA). We focus on accurately capturing the concept drift of normal data in unsupervised scenarios. To interpret drift samples, we integrate a search optimization algorithm and the SHAP method, providing a comprehensive interpretation of drift samples at both the sample and feature levels. Simultaneously, by utilizing the sample-level interpretation results for filtering new and old samples, we retrain the anomaly detection model to mitigate the impact of concept drift and reduce the false positive rate. This integrated strategy demonstrates significant advantages in maintaining model stability and reliability. The experimental results indicate that our method outperforms five baseline methods in adaptability across three datasets and provides interpretability for samples experiencing concept drift.
{"title":"Addressing Concept Drift in IoT Anomaly Detection: Drift Detection, Interpretation, and Adaptation","authors":"Lijuan Xu;Ziyu Han;Dawei Zhao;Xin Li;Fuqiang Yu;Chuan Chen","doi":"10.1109/TSUSC.2024.3386667","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3386667","url":null,"abstract":"Anomaly detection plays a vital role as a crucial security measure for edge devices in Artificial Intelligence and Internet of Things (AIoT). With the rapid development of IoT (Internet of Things), changes in system configurations and the introduction of new devices can lead to significant alterations in device relationships and data flows within the IoT, thereby triggering concept drift. Previously trained anomaly detection models fail to adapt to the changed distribution of streaming data, resulting in a high number of false positive events. This paper aims to address the issue of concept drift in IoT anomaly detection by proposing a comprehensive Concept Drift Detection, Interpretation, and Adaptation framework (CDDIA). We focus on accurately capturing the concept drift of normal data in unsupervised scenarios. To interpret drift samples, we integrate a search optimization algorithm and the SHAP method, providing a comprehensive interpretation of drift samples at both the sample and feature levels. Simultaneously, by utilizing the sample-level interpretation results for filtering new and old samples, we retrain the anomaly detection model to mitigate the impact of concept drift and reduce the false positive rate. This integrated strategy demonstrates significant advantages in maintaining model stability and reliability. The experimental results indicate that our method outperforms five baseline methods in adaptability across three datasets and provides interpretability for samples experiencing concept drift.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"913-924"},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.1109/TSUSC.2024.3391733
Guhui Li;Zidong Wang;Xingzhen Bai;Zhongyi Zhao
This paper is concerned with the set-membership state estimation problem for power harmonics under quantization effects by using the dynamic event-triggered mechanism. The underlying system is subject to unknown but bounded noises that are confined to a sequence of zonotopes. The data transmissions are realized over a digital communication channel, where the measurement signals are quantized by a logarithmic-uniform quantizer before being transmitted from the sensors to the remote estimator. Moreover, a dynamic event-triggered mechanism is introduced to reduce the number of unnecessary data transmissions, thereby relieving the communication burden. The objective of this paper is to design a zonotopic set-membership estimator for power harmonics with guaranteed estimation performance in the simultaneous presence of: 1) unknown but bounded noises; 2) quantization effects; and 3) dynamic event-triggered executions. By resorting to the mathematical induction method, a unified set-membership estimation framework is established, within which a family of zonotopic sets is first derived that contains the estimation errors and, subsequently, the estimator gain matrices are designed by minimizing the $F$