Solar driven desalination system for power and desalination water production by concentrated PVT and MED system

IF 1.3 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-10-23 DOI:10.1515/cppm-2023-0044
Xiaochuan Zhang
{"title":"Solar driven desalination system for power and desalination water production by concentrated PVT and MED system","authors":"Xiaochuan Zhang","doi":"10.1515/cppm-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a thermodynamic study of the combination of Concentrated Photovoltaic Thermal (CPVT) and Multi Effect Desalination (MED) system was conducted. CPVT produces electricity, and the heat produced in CPVT is used for the MED system. Engineering Equation Software (EES) was utilized to simulate this system. The effect of CPVT parameters (area, concentration ratio, and average solar radiation) and MED parameters (effect number and temperature of heating steam) were investigated on the produced heat, produced power, exergy destruction, total mass flow rate (FR) of desalinated water, total FR of feed water, heating steam FR and total brine FR. The range of changes for CPVT surface, concentration ratio, and average solar radiation was considered from 2000 m 2 to 20000 m 2 , from 5 to 15 and from 400 W/m 2 to 1100 W/m 2 , respectively. Based on obtained results, as the surface area of the solar panel, the ratio of concentration, and average solar radiation increase, the heat produced increases. Transferring this heat to the MED unit increases the total FR of desalinated water. But it has no significant effect on the Gain ratio (GOR). As the surface area of the solar panel increases from 10000 m 2 to 12000 m 2 , the average radiation intensity increases from 800 W/m 2 to 1000 W/m 2 , and the concentration ratio increases from 10 to 12 in effect the number of 4 and steam temperature of 70 °C, the total mass FR of desalinated water increases by 29 %, 23 %, and 20 %, respectively.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"60 4","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, a thermodynamic study of the combination of Concentrated Photovoltaic Thermal (CPVT) and Multi Effect Desalination (MED) system was conducted. CPVT produces electricity, and the heat produced in CPVT is used for the MED system. Engineering Equation Software (EES) was utilized to simulate this system. The effect of CPVT parameters (area, concentration ratio, and average solar radiation) and MED parameters (effect number and temperature of heating steam) were investigated on the produced heat, produced power, exergy destruction, total mass flow rate (FR) of desalinated water, total FR of feed water, heating steam FR and total brine FR. The range of changes for CPVT surface, concentration ratio, and average solar radiation was considered from 2000 m 2 to 20000 m 2 , from 5 to 15 and from 400 W/m 2 to 1100 W/m 2 , respectively. Based on obtained results, as the surface area of the solar panel, the ratio of concentration, and average solar radiation increase, the heat produced increases. Transferring this heat to the MED unit increases the total FR of desalinated water. But it has no significant effect on the Gain ratio (GOR). As the surface area of the solar panel increases from 10000 m 2 to 12000 m 2 , the average radiation intensity increases from 800 W/m 2 to 1000 W/m 2 , and the concentration ratio increases from 10 to 12 in effect the number of 4 and steam temperature of 70 °C, the total mass FR of desalinated water increases by 29 %, 23 %, and 20 %, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能驱动海水淡化系统,集中PVT和MED系统发电和海水淡化
摘要本文对聚光光伏热(CPVT)与多效海水淡化(MED)系统的组合进行了热力学研究。CPVT产生电能,CPVT产生的热量用于MED系统。利用工程方程软件(EES)对该系统进行了仿真。考察了CPVT参数(面积、浓度比和平均太阳辐射)和MED参数(加热蒸汽效应数和温度)对产热、产功率、火用破坏、淡化水总质量流量(FR)、给水总质量流量、加热蒸汽总质量流量和卤水总质量流量的影响,CPVT表面、浓度比和平均太阳辐射的变化范围为2000 ~ 20000 m 2;5 ~ 15 W/ m2和400w / m2 ~ 1100w / m2。根据得到的结果,随着太阳能电池板表面积、浓度比和平均太阳辐射的增加,产生的热量也随之增加。将这些热量传递到MED装置可以增加淡化水的总过滤率。但对增益比(GOR)无显著影响。当太阳能电池板表面积从10000 m2增加到12000 m2,平均辐射强度从800 W/ m2增加到1000 W/ m2,浓度比从10增加到12(有效数为4),蒸汽温度为70℃时,淡化水总质量FR分别增加29%、23%和20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Heat transfer efficiency in gas-solid fluidized beds with flat and corrugated walls. Enhancing heat transfer in tube heat exchanger containing water/Cu nanofluid by using turbulator Enhancing heat exchanger efficiency with novel perforated cone-shaped turbulators and nanofluids: a computational study Mathematical modeling and evaluation of permeation and membrane separation performance for Fischer–Tropsch products in a hydrophilic membrane reactor Energy, exergy, economic, and environmental analysis of natural gas sweetening process using lean vapor compression: a comparison study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1