Obaid Ullah, Habib Ullah Khan, Zahid Halim, Sajid Anwar, Muhammad Waqas
{"title":"On Neuroevolution of Multi-Input Compositional Pattern Producing Networks: A Case of Entertainment Computing, Edge Devices, and Smart Cities","authors":"Obaid Ullah, Habib Ullah Khan, Zahid Halim, Sajid Anwar, Muhammad Waqas","doi":"10.1145/3628430","DOIUrl":null,"url":null,"abstract":"This work presents a novel approach by utilizing Heterogeneous Activation Neural Networks (HA-NNs) to evolve the weights of Artificial Neural Networks (ANNs) for reinforcement learning in console and arcade computer games like Atari's Breakout and Sonic the Hedgehog. It is the first study to explore the potential of HA-NNs as potent ANNs in solving gaming-related reinforcement learning problems. Additionally, the proposed solution optimizes data transmission over networks for edge devices, marking a novel application of HA-NNs. The study achieved outstanding results, outperforming recent works in benchmark environments like CartPole-v1, Lunar Lander Continuous, and MountainCar-Continuous, with HA-NNs and ANNs evolved using the Neuroevolution of Augmenting Topologies (NEAT) algorithm. Notably, the key advancements include exceptional scores of 500 in CartPole-v1 and 98.2 in Mountain Car Continuous, demonstrating the efficacy of HA-NNs in reinforcement learning tasks. Beyond gaming, the research addresses the challenge of efficient data communication between edge devices, which has the potential to enhance performance in smart cities while reducing the load on edge devices and supporting seamless entertainment experiences with minimal commuting. This work pioneers the application of HA-NNs in reinforcement learning for computer games and introduces a novel approach for optimizing edge device communication, promising significant advancements in the fields of AI, neural networks, and smart city technologies.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"91 4","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3628430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a novel approach by utilizing Heterogeneous Activation Neural Networks (HA-NNs) to evolve the weights of Artificial Neural Networks (ANNs) for reinforcement learning in console and arcade computer games like Atari's Breakout and Sonic the Hedgehog. It is the first study to explore the potential of HA-NNs as potent ANNs in solving gaming-related reinforcement learning problems. Additionally, the proposed solution optimizes data transmission over networks for edge devices, marking a novel application of HA-NNs. The study achieved outstanding results, outperforming recent works in benchmark environments like CartPole-v1, Lunar Lander Continuous, and MountainCar-Continuous, with HA-NNs and ANNs evolved using the Neuroevolution of Augmenting Topologies (NEAT) algorithm. Notably, the key advancements include exceptional scores of 500 in CartPole-v1 and 98.2 in Mountain Car Continuous, demonstrating the efficacy of HA-NNs in reinforcement learning tasks. Beyond gaming, the research addresses the challenge of efficient data communication between edge devices, which has the potential to enhance performance in smart cities while reducing the load on edge devices and supporting seamless entertainment experiences with minimal commuting. This work pioneers the application of HA-NNs in reinforcement learning for computer games and introduces a novel approach for optimizing edge device communication, promising significant advancements in the fields of AI, neural networks, and smart city technologies.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.