HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2024-05-27 DOI:10.1145/3665645
Li Zhang, Xu Zhou, Danyang Li, Zheng Yang
{"title":"HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization","authors":"Li Zhang, Xu Zhou, Danyang Li, Zheng Yang","doi":"10.1145/3665645","DOIUrl":null,"url":null,"abstract":"<p>Accurate localization of unmanned aerial vehicle (UAV) is critical for navigation in GPS-denied regions, which remains a highly challenging topic in recent research. This paper describes a novel approach to multi-sensor hybrid coupled cooperative localization network (HCCNet) system that combines multiple types of sensors including camera, ultra-wideband (UWB), and inertial measurement unit (IMU) to address this challenge. The camera and IMU can automatically determine the position of UAV based on the perception of surrounding environments and their own measurement data. The UWB node and the UWB wireless sensor network (WSN) in indoor environments jointly determine the global position of UAV, and the proposed dynamic random sample consensus (D-RANSAC) algorithm can optimize UWB localization accuracy. To fully exploit UWB localization results, we provide a HCCNet system which combines the local pose estimator of visual inertial odometry (VIO) system with global constraints from UWB localization results. Experimental results show that the proposed D-RANSAC algorithm can achieve better accuracy than other UWB-based algorithms. The effectiveness of the proposed HCCNet method is verified by a mobile robot in real world and some simulation experiments in indoor environments.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"12 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665645","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate localization of unmanned aerial vehicle (UAV) is critical for navigation in GPS-denied regions, which remains a highly challenging topic in recent research. This paper describes a novel approach to multi-sensor hybrid coupled cooperative localization network (HCCNet) system that combines multiple types of sensors including camera, ultra-wideband (UWB), and inertial measurement unit (IMU) to address this challenge. The camera and IMU can automatically determine the position of UAV based on the perception of surrounding environments and their own measurement data. The UWB node and the UWB wireless sensor network (WSN) in indoor environments jointly determine the global position of UAV, and the proposed dynamic random sample consensus (D-RANSAC) algorithm can optimize UWB localization accuracy. To fully exploit UWB localization results, we provide a HCCNet system which combines the local pose estimator of visual inertial odometry (VIO) system with global constraints from UWB localization results. Experimental results show that the proposed D-RANSAC algorithm can achieve better accuracy than other UWB-based algorithms. The effectiveness of the proposed HCCNet method is verified by a mobile robot in real world and some simulation experiments in indoor environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HCCNet:用于稳健室内定位的混合耦合合作网络
无人驾驶飞行器(UAV)的精确定位对于在全球定位系统(GPS)缺失区域进行导航至关重要,而这仍然是近年来研究中极具挑战性的课题。本文介绍了一种新颖的多传感器混合耦合协同定位网络(HCCNet)系统,该系统结合了多种类型的传感器,包括摄像头、超宽带(UWB)和惯性测量单元(IMU),以应对这一挑战。摄像头和惯性测量单元可根据对周围环境的感知和自身的测量数据自动确定无人飞行器的位置。室内环境中的 UWB 节点和 UWB 无线传感器网络(WSN)可共同确定无人飞行器的全局位置,所提出的动态随机抽样共识(D-RANSAC)算法可优化 UWB 定位精度。为了充分利用 UWB 定位结果,我们提供了一个 HCCNet 系统,该系统结合了视觉惯性里程计(VIO)系统的局部姿态估计和 UWB 定位结果的全局约束。实验结果表明,与其他基于 UWB 的算法相比,所提出的 D-RANSAC 算法能达到更高的精度。通过在真实世界中的移动机器人和室内环境中的一些模拟实验,验证了所提出的 HCCNet 方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1