{"title":"Modeling framework for batch-dependent dynamics of reaction process by combining first principles and machine learning","authors":"Taichi Ishitobi, Yohei Kono, Yoshinori Mochizuki","doi":"10.1002/ecj.12428","DOIUrl":null,"url":null,"abstract":"<p>We propose a modeling framework for automating batch processes operation. Batch processes are often controlled by PID controllers, where engineers manually regulate their parameters and temporal patterns of reference signals. Therefore, it takes a long time for optimizing these parameters and temporal patterns. A possible solution for this is to apply so-called Model Predictive Control (MPC) technology to the tuning. Here, batch process dynamics depend on the types of products and of equipment, thereby forcing engineers to construct and maintain multiple models that correspond to the number of combinations of product types and equipment types. Thus, batch process modeling is a time-consuming and complicated task. To solve this problem, we propose a modeling framework; about a modeling target, the part applying commonly and parameters can be decided in advance are constructed by mathematical models, and the part that required experimentation for designing or tuning are constructed by machine learning models. We expect this framework can improve estimation accuracy and suppressing the number of model construction by separating model construction and combining the mathematical and machine learning models. In our simulation, we confirmed that our proposed model can suppress prediction error (RMSE) of reactor temperature under 1 K. Furthermore, an optimization algorithm with our model can find a temporal pattern of a reference signal so as to reduce control error of reactor temperature under 1.99 K.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"106 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12428","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a modeling framework for automating batch processes operation. Batch processes are often controlled by PID controllers, where engineers manually regulate their parameters and temporal patterns of reference signals. Therefore, it takes a long time for optimizing these parameters and temporal patterns. A possible solution for this is to apply so-called Model Predictive Control (MPC) technology to the tuning. Here, batch process dynamics depend on the types of products and of equipment, thereby forcing engineers to construct and maintain multiple models that correspond to the number of combinations of product types and equipment types. Thus, batch process modeling is a time-consuming and complicated task. To solve this problem, we propose a modeling framework; about a modeling target, the part applying commonly and parameters can be decided in advance are constructed by mathematical models, and the part that required experimentation for designing or tuning are constructed by machine learning models. We expect this framework can improve estimation accuracy and suppressing the number of model construction by separating model construction and combining the mathematical and machine learning models. In our simulation, we confirmed that our proposed model can suppress prediction error (RMSE) of reactor temperature under 1 K. Furthermore, an optimization algorithm with our model can find a temporal pattern of a reference signal so as to reduce control error of reactor temperature under 1.99 K.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).