Nidhi Verma, Pooja Jamdagni, Ashok Kumar, Sunita Srivastava, K Tankeshwar
{"title":"Recent advances in 2D anode materials for Na-ion batteries from a theoretical perspective","authors":"Nidhi Verma, Pooja Jamdagni, Ashok Kumar, Sunita Srivastava, K Tankeshwar","doi":"10.1080/10408436.2023.2273465","DOIUrl":null,"url":null,"abstract":"AbstractNa-ion batteries (SIBs) are a promising replacement for lithium-ion batteries (LIBs) for low-cost and large-scale energy storage systems in the forthcoming years after additional in-depth examination and investigation. A significant part of the development of innovative anode materials and their in-depth understanding has come through simulations. Ab initio simulations based on density functional theory (DFT) have been proven to be a reliable, efficient, and cost-effective way to design new anode materials for SIBs. As a result of the identification of graphene, researchers and scientists were influenced to create new two-dimensional (2D) materials. On account of their distinctive physical and chemical properties, the broad expanse of surface, innovative electronic features, and charging ability of 2D materials attract much attention. Many of these characteristics are significant prerequisites for using anodes in batteries. Herein, based on recent research progress, we have reviewed the structures and electrochemical properties of 2D materials as anode for Na-ion batteries from a theoretical perspective. The effective methodologies for high-performance anode materials are provided based on the substantial literature and theoretical studies. Added to that, we have also explored the various techniques such as heterostructure, doping, defect- and strain-engineering of 2D materials for the improvement of the performance of these materials as anodes for SIBs.Keywords: 2D Materialsdensity functional theoryenergy storagespecific capacityanode materials AcknowledgementsNV thanks the CSIR for providing financial support in the form of a junior research fellowship (JRF). PJ gratefully acknowledges the UGC for D. S. Kothari Post-Doctoral Fellowship. The helpful discussions with Jaspreet Singh and Poonam Chauhan are highly acknowledged.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"209 1","pages":"0"},"PeriodicalIF":8.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Solid State and Materials Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10408436.2023.2273465","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
AbstractNa-ion batteries (SIBs) are a promising replacement for lithium-ion batteries (LIBs) for low-cost and large-scale energy storage systems in the forthcoming years after additional in-depth examination and investigation. A significant part of the development of innovative anode materials and their in-depth understanding has come through simulations. Ab initio simulations based on density functional theory (DFT) have been proven to be a reliable, efficient, and cost-effective way to design new anode materials for SIBs. As a result of the identification of graphene, researchers and scientists were influenced to create new two-dimensional (2D) materials. On account of their distinctive physical and chemical properties, the broad expanse of surface, innovative electronic features, and charging ability of 2D materials attract much attention. Many of these characteristics are significant prerequisites for using anodes in batteries. Herein, based on recent research progress, we have reviewed the structures and electrochemical properties of 2D materials as anode for Na-ion batteries from a theoretical perspective. The effective methodologies for high-performance anode materials are provided based on the substantial literature and theoretical studies. Added to that, we have also explored the various techniques such as heterostructure, doping, defect- and strain-engineering of 2D materials for the improvement of the performance of these materials as anodes for SIBs.Keywords: 2D Materialsdensity functional theoryenergy storagespecific capacityanode materials AcknowledgementsNV thanks the CSIR for providing financial support in the form of a junior research fellowship (JRF). PJ gratefully acknowledges the UGC for D. S. Kothari Post-Doctoral Fellowship. The helpful discussions with Jaspreet Singh and Poonam Chauhan are highly acknowledged.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Critical Reviews in Solid State and Materials Sciences covers a wide range of topics including solid state materials properties, processing, and applications. The journal provides insights into the latest developments and understandings in these areas, with an emphasis on new and emerging theoretical and experimental topics. It encompasses disciplines such as condensed matter physics, physical chemistry, materials science, and electrical, chemical, and mechanical engineering. Additionally, cross-disciplinary engineering and science specialties are included in the scope of the journal.