{"title":"Shannon entropy along hydrogen isoelectronic sequence using Numerov method","authors":"Rachna Joshi, Nupur Verma, Man Mohan","doi":"10.31349/revmexfis.69.060401","DOIUrl":null,"url":null,"abstract":"Shannon entropy (SE) for hydrogen isoelectronic sequence is calculated through numerical simulation. Fast and accurate Numerov method is applied for the computation of the wavefunctions used for the evaluation of Shannon entropy. The reliability of this approach is verified by the excellent comparison with the available literature results. It is observed that Shannon entropy values diminish with an increment in atomic number (Z). Additionally, previously unexplored Shannon entropy behaviour for a variety of higher excited orbitals is investigated. It is found that Shannon entropy exhibits an interesting behavior of increasing and decreasing nature with principal quantum number n and orbital quantum number l, respectively. Benchmark values for Shannon information entropy are established for the ground and excited states as a signature of localization and delocalization of electron density. This will further contribute to the diagnostics of spectroscopic data and atomic system complexity.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":"219 3","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.060401","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shannon entropy (SE) for hydrogen isoelectronic sequence is calculated through numerical simulation. Fast and accurate Numerov method is applied for the computation of the wavefunctions used for the evaluation of Shannon entropy. The reliability of this approach is verified by the excellent comparison with the available literature results. It is observed that Shannon entropy values diminish with an increment in atomic number (Z). Additionally, previously unexplored Shannon entropy behaviour for a variety of higher excited orbitals is investigated. It is found that Shannon entropy exhibits an interesting behavior of increasing and decreasing nature with principal quantum number n and orbital quantum number l, respectively. Benchmark values for Shannon information entropy are established for the ground and excited states as a signature of localization and delocalization of electron density. This will further contribute to the diagnostics of spectroscopic data and atomic system complexity.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).