Coordinating Team Tactics for Swarm-Versus-Swarm Adversarial Games

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Aerospace Information Systems Pub Date : 2023-11-01 DOI:10.2514/1.i011226
Laura G. Strickland, Matthew C. Gombolay
{"title":"Coordinating Team Tactics for Swarm-Versus-Swarm Adversarial Games","authors":"Laura G. Strickland, Matthew C. Gombolay","doi":"10.2514/1.i011226","DOIUrl":null,"url":null,"abstract":"Although swarms of unmanned aerial vehicles have received much attention in the last few years, adversarial swarms (that is, competitive swarm-versus-swarm games) have been less well studied. In this paper, we demonstrate a deep reinforcement learning method to train a policy of fixed-wing aircraft agents to leverage hand-scripted tactics to exploit force concentration advantage and within-team coordination opportunities to destroy, or destroy, as many opponent team members as possible while preventing teammates from being attrited. The efficacy of agents using the policy network trained using the proposed method outperform teams utilizing only one of the handcrafted baseline tactics in [Formula: see text]-vs-[Formula: see text] engagements for [Formula: see text] as small as two and as large as 64 as well as learner teams trained to vary their yaw rate actions, even when the trained team’s agents’ sensor range and teammate partnership possibility is constrained.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"112 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.i011226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Although swarms of unmanned aerial vehicles have received much attention in the last few years, adversarial swarms (that is, competitive swarm-versus-swarm games) have been less well studied. In this paper, we demonstrate a deep reinforcement learning method to train a policy of fixed-wing aircraft agents to leverage hand-scripted tactics to exploit force concentration advantage and within-team coordination opportunities to destroy, or destroy, as many opponent team members as possible while preventing teammates from being attrited. The efficacy of agents using the policy network trained using the proposed method outperform teams utilizing only one of the handcrafted baseline tactics in [Formula: see text]-vs-[Formula: see text] engagements for [Formula: see text] as small as two and as large as 64 as well as learner teams trained to vary their yaw rate actions, even when the trained team’s agents’ sensor range and teammate partnership possibility is constrained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群对群对抗性游戏的协调团队策略
尽管在过去几年中,无人驾驶飞行器群受到了广泛关注,但对抗性蜂群(即竞争性蜂群对抗蜂群游戏)的研究却很少。在本文中,我们展示了一种深度强化学习方法来训练固定翼飞机代理策略,以利用手写脚本战术来利用力量集中优势和团队内协调机会来摧毁或摧毁尽可能多的对手团队成员,同时防止队友被消耗。使用该方法训练的策略网络的代理的效率优于只使用[公式:见文]中手工制作的基线策略中的一种的团队-vs-[公式:见文]约定(小至2个,大至64个)以及训练以改变其偏航率行动的学习者团队,即使训练团队的代理的传感器范围和队友合作可能性受到限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
13.30%
发文量
58
审稿时长
>12 weeks
期刊介绍: This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.
期刊最新文献
New Type-2-Fuzzy-Logic-Based Control System for the Cessna Citation X Basic Engagement Zones Advanced Wavelet Transform-Based Automated System for Drone State Identification Using Radio-Frequency Signal Integration of the Functional Hazard Assessment Within a Model-Based Systems Engineering Framework Safe Spacecraft Inspection via Deep Reinforcement Learning and Discrete Control Barrier Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1