Arón Hernández Trinidad, Teodoro Córdova Fraga, Luis Carlos Padierna García, José Luis López Hernández, Blanca Olivia Murillo Ortiz, Rafael Guzman-Cabrera
{"title":"Automatic image processing to identify post-COVID conditions by using deep learning","authors":"Arón Hernández Trinidad, Teodoro Córdova Fraga, Luis Carlos Padierna García, José Luis López Hernández, Blanca Olivia Murillo Ortiz, Rafael Guzman-Cabrera","doi":"10.31349/revmexfis.69.061101","DOIUrl":null,"url":null,"abstract":"In the present research, a supervised learning classification methodology is proposed to identify post-COVID conditions. Image processing and deep learning methods were employed to analyze a data set provided by the High Specialty Medical Unit No.1 of the Mexican Institute of Social Security (T1-IMSS) of Leon, Guanajuato, Mexico, of Mexican patients infected with COVID-19. The dataset is classified into post-COVID findings and no post-COVID findings. A deep neural network of 50 hidden layers is used to extract regions of interest, with properties that can potentially be related to computer-aided medical diagnosis. Different patterns were found in the post-COVID computed tomography scans: pulmonary fibrosis, ground glass pattern, etc. The efficiency of the proposed method was 97% precision using the cross-validation classification scenario. This result allows to provide an auxiliary tool in medical diagnosis, through computer-aided diagnosis. This model provides an automatic and objective estimation of post-COVID conditions of Mexican patients, facilitating the expert interpretation during the COVID-19 pandemic.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":"79 1-2","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.061101","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present research, a supervised learning classification methodology is proposed to identify post-COVID conditions. Image processing and deep learning methods were employed to analyze a data set provided by the High Specialty Medical Unit No.1 of the Mexican Institute of Social Security (T1-IMSS) of Leon, Guanajuato, Mexico, of Mexican patients infected with COVID-19. The dataset is classified into post-COVID findings and no post-COVID findings. A deep neural network of 50 hidden layers is used to extract regions of interest, with properties that can potentially be related to computer-aided medical diagnosis. Different patterns were found in the post-COVID computed tomography scans: pulmonary fibrosis, ground glass pattern, etc. The efficiency of the proposed method was 97% precision using the cross-validation classification scenario. This result allows to provide an auxiliary tool in medical diagnosis, through computer-aided diagnosis. This model provides an automatic and objective estimation of post-COVID conditions of Mexican patients, facilitating the expert interpretation during the COVID-19 pandemic.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).