Experimental investigation on ferrofluid properties of Cd doped Co-Zn ferrites

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Digest Journal of Nanomaterials and Biostructures Pub Date : 2023-05-01 DOI:10.15251/djnb.2023.182.547
R. Manimegalai, S. Sendhilnathan, V. Chithambaram, M. Kumar
{"title":"Experimental investigation on ferrofluid properties of Cd doped Co-Zn ferrites","authors":"R. Manimegalai, S. Sendhilnathan, V. Chithambaram, M. Kumar","doi":"10.15251/djnb.2023.182.547","DOIUrl":null,"url":null,"abstract":"The Co-Zn ferrites 𝐶𝐶𝐶𝐶0.5𝑍𝑍𝑍𝑍0.5𝐶𝐶𝐶𝐶𝑥𝑥𝐹𝐹𝐹𝐹(2−𝑥𝑥)𝑂𝑂4 (x-0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by CO-precipitation method. The dielectric and structural properties has been investigated by effect of Cd doping in Co-Zn spinel ferrites. Dielectric constants were studied dependence of the frequency and temperature thus revealed that the dielectric dispersion based on the MaxwellWagner method polarizations are agreed with Koop’s conceptualization theory. Further, dielectric properties were studies over a frequency range from 10 kHZ to 30 MHZ. The dielectric constant is varied from 2.4 to 8.4 for real parts and 0.008 to 0.42 for imaginary parts, respectively. The tangent loss also recorded as 0.003 to 0.052 at 1 MHZ due to Co ions concentrations. In high and low frequencies of grain and grain boundary contribution is an important evident for obtained dielectric constant. The obtained values of coercivity (Hc) for these ferrites range between 280.4 Oe to 1380.3 Oe, based on VSM data. By converting Zn2+ and Cd2+ to cobalt magnetic ions it is possible to convert the magnetic properties of cobalt ferrite into a potential individual for numerous technical uses. The dielectric loss at room temperature and at high frequencies is found to be quite negligible. It is also discovered that when Cd is substituted, the dielectric loss tangent reduces.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":"37 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/djnb.2023.182.547","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Co-Zn ferrites 𝐶𝐶𝐶𝐶0.5𝑍𝑍𝑍𝑍0.5𝐶𝐶𝐶𝐶𝑥𝑥𝐹𝐹𝐹𝐹(2−𝑥𝑥)𝑂𝑂4 (x-0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by CO-precipitation method. The dielectric and structural properties has been investigated by effect of Cd doping in Co-Zn spinel ferrites. Dielectric constants were studied dependence of the frequency and temperature thus revealed that the dielectric dispersion based on the MaxwellWagner method polarizations are agreed with Koop’s conceptualization theory. Further, dielectric properties were studies over a frequency range from 10 kHZ to 30 MHZ. The dielectric constant is varied from 2.4 to 8.4 for real parts and 0.008 to 0.42 for imaginary parts, respectively. The tangent loss also recorded as 0.003 to 0.052 at 1 MHZ due to Co ions concentrations. In high and low frequencies of grain and grain boundary contribution is an important evident for obtained dielectric constant. The obtained values of coercivity (Hc) for these ferrites range between 280.4 Oe to 1380.3 Oe, based on VSM data. By converting Zn2+ and Cd2+ to cobalt magnetic ions it is possible to convert the magnetic properties of cobalt ferrite into a potential individual for numerous technical uses. The dielectric loss at room temperature and at high frequencies is found to be quite negligible. It is also discovered that when Cd is substituted, the dielectric loss tangent reduces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镉掺杂Co-Zn铁氧体铁磁流体特性的实验研究
的Co-Zn铁氧体𝐶𝐶𝐶𝐶0.5𝑍𝑍𝑍𝑍0.5𝐶𝐶𝐶𝐶𝑥𝑥𝐹𝐹𝐹𝐹(2−𝑥𝑥)𝑂𝑂4 (x - 0.0, 0.1, 0.2, 0.3, 0.4,和0.5)被共同沉淀合成方法。研究了镉掺杂对钴锌尖晶石铁氧体的介电性能和结构性能的影响。研究了介电常数与频率和温度的关系,结果表明,基于麦克斯韦-瓦格纳方法极化的介电色散符合Koop的概念化理论。此外,介电特性在10 kHZ至30 MHZ的频率范围内进行了研究。介电常数在实部为2.4 ~ 8.4,虚部为0.008 ~ 0.42。在1 MHZ时,由于Co离子浓度的影响,正切损耗也记录为0.003至0.052。在高、低频晶粒和晶界的贡献是得到介电常数的重要证据。所得铁氧体矫顽力(Hc)值在280.4 ~ 1380.3 Oe之间。通过将Zn2+和Cd2+转化为钴磁性离子,可以将钴铁氧体的磁性转化为具有多种技术用途的潜在个体。发现在室温和高频下的介电损耗几乎可以忽略不计。还发现当取代Cd时,介电损耗正切降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digest Journal of Nanomaterials and Biostructures
Digest Journal of Nanomaterials and Biostructures 工程技术-材料科学:综合
CiteScore
1.50
自引率
22.20%
发文量
116
审稿时长
4.3 months
期刊介绍: Under the aegis of the Academy of Romanian Scientists Edited by: -Virtual Institute of Physics operated by Virtual Company of Physics.
期刊最新文献
Investigation of crystal structural and magnetic properties of titanium doped Pr0.67Ba0.33MnO3 perovskite manganites Preparation and properties of PTFE@TiO2/epoxy superhydrophobic coating Room temperature detection of sulfur dioxide using functionalized carbon nanotubes Characterizations of sprayed TiO2 and Cu doped TiO2 thin films prepared by spray pyrolysis method Synthesis and characterization of Fe-substituting BaO nanoparticles by sol-gel method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1