Israel Flores-Guadarrama, José G. Gonzalez-Rodriguez, Jorge Uruchurtu-Chavarín, A.M. Ramírez-Arteaga, Genoveva Bustos Rivera Bahena, R. Guardián-Tapia, Roy López-Sesenes
{"title":"Effect of refrigerant absorbent combinations in the corrosion resistance of copper as structural material in absorption refrigeration systems (ARS)","authors":"Israel Flores-Guadarrama, José G. Gonzalez-Rodriguez, Jorge Uruchurtu-Chavarín, A.M. Ramírez-Arteaga, Genoveva Bustos Rivera Bahena, R. Guardián-Tapia, Roy López-Sesenes","doi":"10.1080/1478422x.2023.2261782","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe present research was focused on analyzing the corrosion resistance of copper in the presence of refrigerant-absorbent combinations such as lithium bromide (LiBr), lithium nitrate (LiNO3) and calcium chloride (CaCl2), used in Adsorption Refrigeration Systems (ARS). Electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, electrochemical noise analyses and potentiodynamic polarisation curves were applied to study the test solution combination effect on the corrosion rate of copper as a structural material in ARS. OCP analyses reveal that the Ecorr shifted based on the temperature and test solution. Meanwhile, when the copper was immersed in LiBr/H2O + CaCl2 at 80°C, the corrosion current density (Icorr) was lower (0.003 mA/cm2). Also, The Rp estimated from EIS shows an increase at 80°C. Micrographs of the copper surface immersed in LiBr/H2O and LiBr + CaCl2 observed cracks and pits. But also, when the corrosion product layer was removed, a less heterogeneous surface was revealed.KEYWORDS: Corrosionadsorption refrigeration systems (ARS)copperabsorbent compounds mixture Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data supporting this study’s findings are available from the corresponding author upon reasonable request.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"65 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1478422x.2023.2261782","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe present research was focused on analyzing the corrosion resistance of copper in the presence of refrigerant-absorbent combinations such as lithium bromide (LiBr), lithium nitrate (LiNO3) and calcium chloride (CaCl2), used in Adsorption Refrigeration Systems (ARS). Electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, electrochemical noise analyses and potentiodynamic polarisation curves were applied to study the test solution combination effect on the corrosion rate of copper as a structural material in ARS. OCP analyses reveal that the Ecorr shifted based on the temperature and test solution. Meanwhile, when the copper was immersed in LiBr/H2O + CaCl2 at 80°C, the corrosion current density (Icorr) was lower (0.003 mA/cm2). Also, The Rp estimated from EIS shows an increase at 80°C. Micrographs of the copper surface immersed in LiBr/H2O and LiBr + CaCl2 observed cracks and pits. But also, when the corrosion product layer was removed, a less heterogeneous surface was revealed.KEYWORDS: Corrosionadsorption refrigeration systems (ARS)copperabsorbent compounds mixture Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data supporting this study’s findings are available from the corresponding author upon reasonable request.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.