A Hybrid Metaheuristic Algorithm for Stop Point Selection in Wireless Rechargeable Sensor Network

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2023-09-28 DOI:10.46604/ijeti.2023.11552
None Siron Anita Susan T, None Nithya Balasubramanian
{"title":"A Hybrid Metaheuristic Algorithm for Stop Point Selection in Wireless Rechargeable Sensor Network","authors":"None Siron Anita Susan T, None Nithya Balasubramanian","doi":"10.46604/ijeti.2023.11552","DOIUrl":null,"url":null,"abstract":"A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"48 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.11552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线可充电传感器网络中停车点选择的混合元启发式算法
无线可充电传感器网络(WRSN)可以通过移动充电车(MCV)对可充电传感器节点(RSN)进行无线充电。大多数现有的研究都是随机选择MCV的停止点(SP)、集群中心或集群头部位置,而没有探索rsn的需求。充电延迟长,充电吞吐量低,MCV频繁跳闸,死节点多。为了克服这些问题,本文提出了一种混合元启发式停止点选择算法(HMA-SPS),该算法结合了蜻蜓算法(DA)、萤火虫算法(FA)和灰狼优化算法(GWO)。使用FA和GWO技术,数据分析使用rsn的运行时指标(如能量、延迟、距离和信任因素)预测理想的SP。仿真结果表明,该算法收敛速度快,时延低,并且可以通过较少的MCV访问来充电更多的rsn,从而进一步提高能量利用率、吞吐量、网络寿命和信任系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm Prediction of Distribution Network Line Loss Rate Based on Ensemble Learning Optimization of SM4 Encryption Algorithm for Power Metering Data Transmission Finite Element Analysis of a Novel Tensegrity-Based Vibratory Platform Simulation and Measurement Analysis of an Integrated Flow Battery Energy-Storage System with Hybrid Wind/Wave Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1