{"title":"Finite Element Analysis of a Novel Tensegrity-Based Vibratory Platform","authors":"Wen-Hsiang Hsieh, Chen-Ji Pan, Yen-Chun Hsieh","doi":"10.46604/ijeti.2023.13230","DOIUrl":null,"url":null,"abstract":"The study aims to conduct the finite element analysis (FEA) of a novel tensegrity-based vibratory platform by using IronCAD software. and analyze its deformation under external forces to verify if the platform can generate the required advancing motion. Firstly, the structure and operating principles of the proposed platform are introduced. Subsequently, individual parts are created using IronCAD software and assembled to form a solid model of the entire platform. Finally, employing Multiphysics for IronCAD, FEA is conducted to analyze the platform’s displacement under different external forces, as well as to examine its natural frequencies and mode shapes. The simulation results indicate that the proposed platform effectively moves a part in a specified direction. Additionally, the maximum stress remains below the yield strength. Moreover, the mode shapes corresponding to the initial 3 natural frequencies contribute to the advancing motion.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"111 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.13230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study aims to conduct the finite element analysis (FEA) of a novel tensegrity-based vibratory platform by using IronCAD software. and analyze its deformation under external forces to verify if the platform can generate the required advancing motion. Firstly, the structure and operating principles of the proposed platform are introduced. Subsequently, individual parts are created using IronCAD software and assembled to form a solid model of the entire platform. Finally, employing Multiphysics for IronCAD, FEA is conducted to analyze the platform’s displacement under different external forces, as well as to examine its natural frequencies and mode shapes. The simulation results indicate that the proposed platform effectively moves a part in a specified direction. Additionally, the maximum stress remains below the yield strength. Moreover, the mode shapes corresponding to the initial 3 natural frequencies contribute to the advancing motion.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.