Romain Martin, Martin Figueiredo, Christer Johansson, Jason R. Tavares, Martine Dubé
{"title":"Characterization of Magnetic Susceptor Heating Rate Due to Hysteresis Losses in Thermoplastic Welding","authors":"Romain Martin, Martin Figueiredo, Christer Johansson, Jason R. Tavares, Martine Dubé","doi":"10.33599/sj.v59no5.02","DOIUrl":null,"url":null,"abstract":"Welding techniques are emerging as a new method to join thermoplastic composite parts. They present a fast and efficient alternative to adhesives and mechanical fasteners. Induction welding is a welding technique that relies on the application of an oscillating magnetic field on the joining interface, where a material called a magnetic susceptor generates heat by interacting with the applied magnetic field. In this work, susceptors relying on magnetic hysteresis losses made of polyetherimide (PEI) and nickel (Ni) particles are investigated with varying Ni concentration. The materials are mixed using an internal mixer and pressed to form films approximately 500μm thick. To characterize the heating rates of the susceptor materials, samples are placed on an induction coil – a water-cooled copper tube in which AC current (frequency 388kHz), generates an alternating magnetic field – and the temperature evolution is measured using a thermal camera. An increasing concentration of Ni particles results in increased heating rate and maximum temperature reached by the samples. The temperature-time experimental curves are compared with theoretical heating curves to verify if the model can be used to predict the temperature evolution at the joining interface during a welding process.","PeriodicalId":49577,"journal":{"name":"SAMPE Journal","volume":"12 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAMPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33599/sj.v59no5.02","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Welding techniques are emerging as a new method to join thermoplastic composite parts. They present a fast and efficient alternative to adhesives and mechanical fasteners. Induction welding is a welding technique that relies on the application of an oscillating magnetic field on the joining interface, where a material called a magnetic susceptor generates heat by interacting with the applied magnetic field. In this work, susceptors relying on magnetic hysteresis losses made of polyetherimide (PEI) and nickel (Ni) particles are investigated with varying Ni concentration. The materials are mixed using an internal mixer and pressed to form films approximately 500μm thick. To characterize the heating rates of the susceptor materials, samples are placed on an induction coil – a water-cooled copper tube in which AC current (frequency 388kHz), generates an alternating magnetic field – and the temperature evolution is measured using a thermal camera. An increasing concentration of Ni particles results in increased heating rate and maximum temperature reached by the samples. The temperature-time experimental curves are compared with theoretical heating curves to verify if the model can be used to predict the temperature evolution at the joining interface during a welding process.
期刊介绍:
SAMPE Journal readers represent the diversity of the advanced materials and processes industry. Our readers are creative and innovative, they publish, they develop concepts, they win patents, they move the world of materials and processes.
Join thought leaders – academicians, engineers, scientists, business leaders, researchers, suppliers, manufacturers – and become a reader of the industry’s only technical journal dedicated to advanced materials and processes.