Automated Fiber Placement Laminate Level Optimization for Mitigation of Through Thickness Defect Stacking

IF 0.2 4区 材料科学 Q4 ENGINEERING, MULTIDISCIPLINARY SAMPE Journal Pub Date : 2023-11-01 DOI:10.33599/sj.v59no6.03
N. Swingle, A. Brasington, J. Halbritter, R. Harik
{"title":"Automated Fiber Placement Laminate Level Optimization for Mitigation of Through Thickness Defect Stacking","authors":"N. Swingle, A. Brasington, J. Halbritter, R. Harik","doi":"10.33599/sj.v59no6.03","DOIUrl":null,"url":null,"abstract":"Manufacturing composite structures with Automated Fiber Placement (AFP) requires detailed process planning that is rigorous and time consuming. To facilitate, accelerate and perpetuate process planning knowledge, the Computer Aided Process Planning (CAPP) tool was developed. CAPP assists process planners in identifying optimal layup strategies for each ply of a laminate. This paper expands the established framework for analyzing defect stack-up through thickness of a laminate. Four different combinatorial optimization algorithms are implemented and evaluated: genetic algorithm, differential evolution, particle swarm, and greedy search. The algorithms identify optimal combinations of ply-level layup strategies by analyzing defect stacking using two objective functions. These approaches are evaluated through a digital case study performed on a complex tool surface. The result is a streamlined methodology for comparing different laminate-level manufacturing strategies and minimizing the through thickness defect stack-up.","PeriodicalId":49577,"journal":{"name":"SAMPE Journal","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAMPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33599/sj.v59no6.03","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manufacturing composite structures with Automated Fiber Placement (AFP) requires detailed process planning that is rigorous and time consuming. To facilitate, accelerate and perpetuate process planning knowledge, the Computer Aided Process Planning (CAPP) tool was developed. CAPP assists process planners in identifying optimal layup strategies for each ply of a laminate. This paper expands the established framework for analyzing defect stack-up through thickness of a laminate. Four different combinatorial optimization algorithms are implemented and evaluated: genetic algorithm, differential evolution, particle swarm, and greedy search. The algorithms identify optimal combinations of ply-level layup strategies by analyzing defect stacking using two objective functions. These approaches are evaluated through a digital case study performed on a complex tool surface. The result is a streamlined methodology for comparing different laminate-level manufacturing strategies and minimizing the through thickness defect stack-up.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动纤维铺放层级优化,减少厚度缺陷堆叠
使用自动纤维铺放技术(AFP)制造复合材料结构需要详细的工艺规划,这既严格又耗时。为了促进、加快和延续工艺规划知识,我们开发了计算机辅助工艺规划 (CAPP) 工具。CAPP 可帮助工艺规划人员确定层压板各层的最佳铺层策略。本文扩展了分析层压板厚度缺陷堆积的既定框架。本文实施并评估了四种不同的组合优化算法:遗传算法、微分进化算法、粒子群算法和贪婪搜索算法。这些算法通过使用两个目标函数分析缺陷堆积,确定层级铺层策略的最佳组合。通过对复杂工具表面进行数字案例研究,对这些方法进行了评估。结果是一种简化的方法,可用于比较不同的层叠制造策略,并最大限度地减少厚度缺陷堆积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SAMPE Journal
SAMPE Journal 工程技术-材料科学:综合
CiteScore
0.16
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: SAMPE Journal readers represent the diversity of the advanced materials and processes industry. Our readers are creative and innovative, they publish, they develop concepts, they win patents, they move the world of materials and processes. Join thought leaders – academicians, engineers, scientists, business leaders, researchers, suppliers, manufacturers – and become a reader of the industry’s only technical journal dedicated to advanced materials and processes.
期刊最新文献
Design of Extruder with Metering Section Removed and Replaced with Gear Pump for Machine Space Savings in Large Format Additive Manufacturing Comparative Analysis of Water-Induced Response in 3D-Printed SCF/ABS Composites under Controlled Diffusion Additive Manufacturing Process Simulation of Laser Powder Bed Fusion and Benchmarks Electroplating Additively Manufactured Honeycomb Structures to Increase Energy Absorption Under Quasi-Static Crush Five-Axis Additive Manufacturing of a Thermoset Composite Formulation for Thermal Protection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1