Jinjin Chen , Pingyu Jiang , Xinping Liu , Huawen Huang , Guojiang Mao , Guo-Jun Deng
{"title":"Pictet-spengler/transamination cascade reaction of indoles for modular synthesis of marinoquinoline analogues","authors":"Jinjin Chen , Pingyu Jiang , Xinping Liu , Huawen Huang , Guojiang Mao , Guo-Jun Deng","doi":"10.1016/j.gresc.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>The Pictet-Spengler/transamination cascade reaction enables modular synthesis of marinoquinoline analogues through three-component indole ring-expansion/cyclization in the manner of novel N1–C2 cleavage of indoles. This metal-free protocol exhibits very broad functional group tolerance with up to quantitative yields. Preliminary studies on the antitumor activity of the resultant marinoquinoline analogues reveal that the indolyl-attached pyrrolo[2,3-<em>c</em>]quinoline product (<strong>5d</strong>) shows great potential (IC<sub>50</sub> of 0.32 μg/mL to HeLa cells) as a promising anticancer agent in clinic.</div></div>","PeriodicalId":12794,"journal":{"name":"Green Synthesis and Catalysis","volume":"5 4","pages":"Pages 310-314"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Synthesis and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666554923000777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Pictet-Spengler/transamination cascade reaction enables modular synthesis of marinoquinoline analogues through three-component indole ring-expansion/cyclization in the manner of novel N1–C2 cleavage of indoles. This metal-free protocol exhibits very broad functional group tolerance with up to quantitative yields. Preliminary studies on the antitumor activity of the resultant marinoquinoline analogues reveal that the indolyl-attached pyrrolo[2,3-c]quinoline product (5d) shows great potential (IC50 of 0.32 μg/mL to HeLa cells) as a promising anticancer agent in clinic.