Nikolaos P. Theodorakatos, Rohit Babu, Angelos P. Moschoudis
{"title":"The Branch-and-Bound Algorithm in Optimizing Mathematical Programming Models to Achieve Power Grid Observability","authors":"Nikolaos P. Theodorakatos, Rohit Babu, Angelos P. Moschoudis","doi":"10.3390/axioms12111040","DOIUrl":null,"url":null,"abstract":"Phasor Measurement Units (PMUs) are the backbone of smart grids that are able to measure power system observability in real-time. The deployment of synchronized sensors in power networks opens up the advantage of real-time monitoring of the network state. An optimal number of PMUs must be installed to ensure system observability. For that reason, an objective function is minimized, reflecting the cost of PMU installation around the power grid. As a result, a minimization model is declared where the objective function is defined over an adequate number of constraints on a binary decision variable domain. To achieve maximum network observability, there is a need to find the best number of PMUs and put them in appropriate locations around the power grid. Hence, maximization models are declared in a decision-making way to obtain optimality satisfying a guaranteed stopping and optimality criteria. The best performance metrics are achieved using binary integer, semi-definite, and binary polynomial models to encounter the optimal number of PMUs with suitable PMU positioning sites. All optimization models are implemented with powerful optimization solvers in MATLAB to obtain the global solution point.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"28 17","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms12111040","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Phasor Measurement Units (PMUs) are the backbone of smart grids that are able to measure power system observability in real-time. The deployment of synchronized sensors in power networks opens up the advantage of real-time monitoring of the network state. An optimal number of PMUs must be installed to ensure system observability. For that reason, an objective function is minimized, reflecting the cost of PMU installation around the power grid. As a result, a minimization model is declared where the objective function is defined over an adequate number of constraints on a binary decision variable domain. To achieve maximum network observability, there is a need to find the best number of PMUs and put them in appropriate locations around the power grid. Hence, maximization models are declared in a decision-making way to obtain optimality satisfying a guaranteed stopping and optimality criteria. The best performance metrics are achieved using binary integer, semi-definite, and binary polynomial models to encounter the optimal number of PMUs with suitable PMU positioning sites. All optimization models are implemented with powerful optimization solvers in MATLAB to obtain the global solution point.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.