Mahmoud M. Abdelwahab, M. R. Abonazel, Ali T. Hammad, Amera M. El-Masry
{"title":"Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model","authors":"Mahmoud M. Abdelwahab, M. R. Abonazel, Ali T. Hammad, Amera M. El-Masry","doi":"10.3390/axioms13010046","DOIUrl":null,"url":null,"abstract":"This study introduces a new two-parameter Liu estimator (PMTPLE) for addressing the multicollinearity problem in the Poisson regression model (PRM). The estimation of the PRM is traditionally accomplished through the Poisson maximum likelihood estimator (PMLE). However, when the explanatory variables are correlated, thus leading to multicollinearity, the variance or standard error of the PMLE is inflated. To address this issue, several alternative estimators have been introduced, including the Poisson ridge regression estimator (PRRE), Liu estimator (PLE), and adjusted Liu estimator (PALE), each of them relying on a single shrinkage parameter. The PMTPLE uses two shrinkage parameters, which enhances its adaptability and robustness in the presence of multicollinearity between explanatory variables. To assess the performance of the PMTPLE compared to the four existing estimators (the PMLE, PRRE, PLE, and PALE), a simulation study is conducted that encompasses various scenarios and two empirical applications. The evaluation of the performance is based on the mean square error (MSE) criterion. The theoretical comparison, simulation results, and findings of the two applications consistently demonstrate the superiority of the PMTPLE over the other estimators, establishing it as a robust solution for count data analysis under multicollinearity conditions.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"27 6","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13010046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a new two-parameter Liu estimator (PMTPLE) for addressing the multicollinearity problem in the Poisson regression model (PRM). The estimation of the PRM is traditionally accomplished through the Poisson maximum likelihood estimator (PMLE). However, when the explanatory variables are correlated, thus leading to multicollinearity, the variance or standard error of the PMLE is inflated. To address this issue, several alternative estimators have been introduced, including the Poisson ridge regression estimator (PRRE), Liu estimator (PLE), and adjusted Liu estimator (PALE), each of them relying on a single shrinkage parameter. The PMTPLE uses two shrinkage parameters, which enhances its adaptability and robustness in the presence of multicollinearity between explanatory variables. To assess the performance of the PMTPLE compared to the four existing estimators (the PMLE, PRRE, PLE, and PALE), a simulation study is conducted that encompasses various scenarios and two empirical applications. The evaluation of the performance is based on the mean square error (MSE) criterion. The theoretical comparison, simulation results, and findings of the two applications consistently demonstrate the superiority of the PMTPLE over the other estimators, establishing it as a robust solution for count data analysis under multicollinearity conditions.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.