{"title":"Avoided wildfire impact modeling with counterfactual probabilistic analysis","authors":"Matthew P. Thompson, John F. Carriger","doi":"10.3389/ffgc.2023.1266413","DOIUrl":null,"url":null,"abstract":"Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes in New Mexico, USA, and show applications for post-event analysis as well as pre-event evaluation of fuel treatment scenarios. This approach found that treated landscapes likely would have reduced fire risk compared to the untreated scenarios. To conclude, we offer ideas for future expansions in theory and methods.","PeriodicalId":12538,"journal":{"name":"Frontiers in Forests and Global Change","volume":"354 9","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Forests and Global Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffgc.2023.1266413","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes in New Mexico, USA, and show applications for post-event analysis as well as pre-event evaluation of fuel treatment scenarios. This approach found that treated landscapes likely would have reduced fire risk compared to the untreated scenarios. To conclude, we offer ideas for future expansions in theory and methods.