A Novel Individual Aircraft Life Monitoring Method Based on Reliable Life Consumption Assessment

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Machines Pub Date : 2023-11-08 DOI:10.3390/machines11111016
Yueshuai Fu, Huimin Fu
{"title":"A Novel Individual Aircraft Life Monitoring Method Based on Reliable Life Consumption Assessment","authors":"Yueshuai Fu, Huimin Fu","doi":"10.3390/machines11111016","DOIUrl":null,"url":null,"abstract":"Individual life monitoring is crucial for ensuring aircraft flight safety. Conventional life-consumption-based monitoring methods ignore reliability, thus disjoining them from the aircraft’s reliable life determination and extension, where high confidence and reliability are required. Therefore, this paper proposes a reliable life consumption and individual life monitoring method for aircraft structure fatigue. In the paper, the P-S-N curve, i.e., the relationship between the aircraft structure’s life (N) and fatigue load (S) under a certain probability (P), is established, by which the lower confidence limit of the aircraft structure’s reliable life can be evaluated under any fatigue loads. Based on that and the aircraft’s monitored fatigue loads, the indexes of reliable life consumption and remaining reliable life percentages are proposed and assessed in real time for individual aircraft life monitoring and online life management. Case studies indicate that the proposed method can guarantee high confidence and reliability requirements in individual life monitoring, consistent with the aircraft’s life determination and extension, which are widely accepted nowadays in engineering practice.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"325 5","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines11111016","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Individual life monitoring is crucial for ensuring aircraft flight safety. Conventional life-consumption-based monitoring methods ignore reliability, thus disjoining them from the aircraft’s reliable life determination and extension, where high confidence and reliability are required. Therefore, this paper proposes a reliable life consumption and individual life monitoring method for aircraft structure fatigue. In the paper, the P-S-N curve, i.e., the relationship between the aircraft structure’s life (N) and fatigue load (S) under a certain probability (P), is established, by which the lower confidence limit of the aircraft structure’s reliable life can be evaluated under any fatigue loads. Based on that and the aircraft’s monitored fatigue loads, the indexes of reliable life consumption and remaining reliable life percentages are proposed and assessed in real time for individual aircraft life monitoring and online life management. Case studies indicate that the proposed method can guarantee high confidence and reliability requirements in individual life monitoring, consistent with the aircraft’s life determination and extension, which are widely accepted nowadays in engineering practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可靠寿命消耗评估的单架飞机寿命监测新方法
个人生命监测是保障飞机飞行安全的关键。传统的基于寿命消耗的监测方法忽略了可靠性,从而脱离了飞机可靠的寿命确定和延长,而这需要高置信度和可靠性。为此,本文提出了一种可靠的飞机结构疲劳寿命消耗和个体寿命监测方法。本文建立了飞机结构在一定概率(P)下的寿命(N)与疲劳载荷(S)的关系P-S-N曲线,以此来评估飞机结构在任意疲劳载荷下的可靠寿命的置信下限。在此基础上,结合飞机疲劳载荷监测情况,提出了可靠寿命消耗指标和剩余可靠寿命百分比指标,并对其进行实时评估,用于单机寿命监测和在线寿命管理。实例研究表明,该方法能够保证个体寿命监测的高置信度和可靠性要求,符合当前工程实践中广泛接受的飞机寿命确定和延长要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
期刊最新文献
Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations Vibration Research on Centrifugal Loop Dryer Machines Used in Plastic Recycling Processes Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits Considerations on the Dynamics of Biofidelic Sensors in the Assessment of Human–Robot Impacts Structural Design with Self-Weight and Inertial Loading Using Simulated Annealing for Non-Gradient Topology Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1