Procyanidin Dimer from the Stem Bark of Moringa oleifera (Lam.) Attenuates Insulin Resistance in Rats

IF 0.9 Q4 CHEMISTRY, MEDICINAL Journal of Biologically Active Products from Nature Pub Date : 2023-11-08 DOI:10.1080/22311866.2023.2277897
Hasanpasha N. Sholapur, Basanagouda M. Patil, Fatima Sanjeri Dasankoppa
{"title":"Procyanidin Dimer from the Stem Bark of <i>Moringa oleifera</i> (Lam.) Attenuates Insulin Resistance in Rats","authors":"Hasanpasha N. Sholapur, Basanagouda M. Patil, Fatima Sanjeri Dasankoppa","doi":"10.1080/22311866.2023.2277897","DOIUrl":null,"url":null,"abstract":"AbstractAlcoholic extract and its ethyl acetate fraction of Moringa oleifera (Lam.) (MO), (Moringaceae) bark are experimentally claimed to possess insulin-sensitizing potentials. The present study aimed to isolate and characterize the phytochemical(s) responsible for insulin sensitization in dexamethasone-induced acute and chronic rat models for insulin resistance (IR). The reported ethyl acetate fraction from the alcoholic extract of the bark of MO was prepared and subjected to bioactivity-guided sub-fractionation and isolation of phytochemicals. A component responsible for improving insulin sensitivity in rat models for IR was isolated and reported for the first time from the bark of MO and its structure was characterized as a procyanidin dimer type of polyphenol by spectroscopic techniques.Keywords: DexamethasoneInsulin resistanceMoringa oleiferaOral glucose tolerance testProcyanidin","PeriodicalId":15364,"journal":{"name":"Journal of Biologically Active Products from Nature","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biologically Active Products from Nature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22311866.2023.2277897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractAlcoholic extract and its ethyl acetate fraction of Moringa oleifera (Lam.) (MO), (Moringaceae) bark are experimentally claimed to possess insulin-sensitizing potentials. The present study aimed to isolate and characterize the phytochemical(s) responsible for insulin sensitization in dexamethasone-induced acute and chronic rat models for insulin resistance (IR). The reported ethyl acetate fraction from the alcoholic extract of the bark of MO was prepared and subjected to bioactivity-guided sub-fractionation and isolation of phytochemicals. A component responsible for improving insulin sensitivity in rat models for IR was isolated and reported for the first time from the bark of MO and its structure was characterized as a procyanidin dimer type of polyphenol by spectroscopic techniques.Keywords: DexamethasoneInsulin resistanceMoringa oleiferaOral glucose tolerance testProcyanidin
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辣木茎皮原花青素二聚体的研究减轻大鼠胰岛素抵抗
辣木(Moringaceae)树皮乙醇提取物及其乙酸乙酯组分具有胰岛素增敏潜能。本研究旨在分离和表征地塞米松诱导的急性和慢性胰岛素抵抗(IR)大鼠模型中负责胰岛素敏化的植物化学物质。采用生物活性导向亚分馏和植物化学成分分离的方法,制备了黄皮醇提物的乙酸乙酯组分。本文首次从MO树皮中分离并报道了一种改善IR大鼠模型胰岛素敏感性的成分,并通过光谱技术鉴定其结构为原花青素二聚体型多酚。关键词:地塞米松胰岛素抵抗辣木油叶口服糖耐量试验原花青素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biologically Active Products from Nature
Journal of Biologically Active Products from Nature Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.10
自引率
0.00%
发文量
21
期刊最新文献
Unveiling the antibreast cancer mechanism of Euphorbia hirta ethanol extract: computational and experimental study Potential anticancer activities of schisandracaurin C against NTERA-2 cancer stem cells Insights into nephroprotective potentials of luteolin and pharmacological advances: A Review Volatile metabolites, antioxidant and biological activities of Bursera simaruba (L.) Sarg. essential oil, from the tropical dry forest, Cesar, Colombian Caribbean Region Synthesis, biological application, and computational study of a thymol-based molecule
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1