{"title":"Influence of Deposition Parameters of ITO Films on the Performance of HJT Solar Cells","authors":"Guoping Huang, Guixiang Zhao, Xixi Huang, Hao Zhuang, Zhongjian Zhang, Ronggang Gao, Fengxian Xie","doi":"10.1155/2023/1065503","DOIUrl":null,"url":null,"abstract":"TCO (transparent conductive oxide) films are widely used in solar cells due to the characteristics of transparency and conductivity. In this paper, ITO (indium tin oxide) transparent conductive films are prepared on common slides by DC magnetron sputtering, and the preparation process and characteristics of ITO films are studied. The target for sputtering is ITO, with the mass ratio of In203 and Sn02 was 90% : 10%. The sheet resistance, carrier concentration, and carrier mobility of ITO films are measured and analyzed by a UV-Vis spectrophotometer, four-point probe, and Hall effect measurement system. By changing the oxygen content, deposition temperature, and sputtering power to studied the effects on the light transmittance and electrical conductivity of the ITO films, further studied the effects on the HJT (heterojunction with intrinsic thin film) solar cells, and finally determined the appropriate preparation parameters. Results show that the resistance is <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mn>6</mn> <mo>.</mo> <msup> <mrow> <mn>4</mn> </mrow> <mrow> <mo>∗</mo> </mrow> </msup> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> <mtext> </mtext> <mi>Ω</mi> <mo>•</mo> <mtext>cm</mtext> </math> , the light transmittance is beyond 90.6%, efficiency is 23.78%, and bifacial ratio is 84% when oxygen content is 2.2%, sputtering power is 3 kw, and deposition temperature is 190°C.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"43 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1065503","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
TCO (transparent conductive oxide) films are widely used in solar cells due to the characteristics of transparency and conductivity. In this paper, ITO (indium tin oxide) transparent conductive films are prepared on common slides by DC magnetron sputtering, and the preparation process and characteristics of ITO films are studied. The target for sputtering is ITO, with the mass ratio of In203 and Sn02 was 90% : 10%. The sheet resistance, carrier concentration, and carrier mobility of ITO films are measured and analyzed by a UV-Vis spectrophotometer, four-point probe, and Hall effect measurement system. By changing the oxygen content, deposition temperature, and sputtering power to studied the effects on the light transmittance and electrical conductivity of the ITO films, further studied the effects on the HJT (heterojunction with intrinsic thin film) solar cells, and finally determined the appropriate preparation parameters. Results show that the resistance is , the light transmittance is beyond 90.6%, efficiency is 23.78%, and bifacial ratio is 84% when oxygen content is 2.2%, sputtering power is 3 kw, and deposition temperature is 190°C.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells