Yong Liu, Yang Chen, Jie Zhu, Mengze Lu, Chuanxia Jiang, Zhiwei Fan, Taolin Sun
{"title":"Time-dependent mechanical behavior of tough hydrogels under multiaxial stretching","authors":"Yong Liu, Yang Chen, Jie Zhu, Mengze Lu, Chuanxia Jiang, Zhiwei Fan, Taolin Sun","doi":"10.1080/19475411.2023.2255554","DOIUrl":null,"url":null,"abstract":"Understanding the time-dependent mechanical behavior of tough and viscoelastic hydrogels under complex external loading is crucial. In this study, we utilized tough and viscoelastic hydrogels synthesized through the copolymerization of methacrylic acid and methacrylamide as a model system to investigate their mechanical behavior under multiaxial stretching across a wide range of strain rates. Three stretching modes examined were uniaxial, pure shear, and equal biaxial stretching. Our findings show that under equal biaxial stretching, the hydrogels exhibit higher mechanical properties and energy dissipation compared to uniaxial and pure shear stretching, owing to the greater contribution of hydrogen bonds to energy dissipation in the former stretching mode. Additionally, employing the time-elongation separability method during the stretching process, we observed that the relaxation of dynamic hydrogen bonds in the hydrogels only depends on stretching time, independent of the elongation ratio and stretching modes. We anticipate that this study will yield valuable contributions to the design of durable load-bearing soft materials, particularly in dealing with complex deformation and strain rate responses.","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"6 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475411.2023.2255554","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the time-dependent mechanical behavior of tough and viscoelastic hydrogels under complex external loading is crucial. In this study, we utilized tough and viscoelastic hydrogels synthesized through the copolymerization of methacrylic acid and methacrylamide as a model system to investigate their mechanical behavior under multiaxial stretching across a wide range of strain rates. Three stretching modes examined were uniaxial, pure shear, and equal biaxial stretching. Our findings show that under equal biaxial stretching, the hydrogels exhibit higher mechanical properties and energy dissipation compared to uniaxial and pure shear stretching, owing to the greater contribution of hydrogen bonds to energy dissipation in the former stretching mode. Additionally, employing the time-elongation separability method during the stretching process, we observed that the relaxation of dynamic hydrogen bonds in the hydrogels only depends on stretching time, independent of the elongation ratio and stretching modes. We anticipate that this study will yield valuable contributions to the design of durable load-bearing soft materials, particularly in dealing with complex deformation and strain rate responses.
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.