A quasi-solid polymer electrolyte-based structural battery with high mechanical and electrochemical performance

IF 10.7 Q1 CHEMISTRY, PHYSICAL EcoMat Pub Date : 2023-10-01 DOI:10.1002/eom2.12418
Gerald Singer, Cheng-Tien Hsieh, Tianwei Jin, Seung Hoon Lee, Yuan Yang
{"title":"A quasi-solid polymer electrolyte-based structural battery with high mechanical and electrochemical performance","authors":"Gerald Singer,&nbsp;Cheng-Tien Hsieh,&nbsp;Tianwei Jin,&nbsp;Seung Hoon Lee,&nbsp;Yuan Yang","doi":"10.1002/eom2.12418","DOIUrl":null,"url":null,"abstract":"<p>Structural batteries are attractive for weight reduction in electric transportation. For their practical applications excellent mechanical properties and electrochemical performance are required simultaneously, which remains a grand challenge. In this study, we present a new scalable and low-cost design, which uses a quasi-solid polymer electrolyte (QSPE) to achieve both remarkably improved flexural properties and attractive energy density. The QSPE has a high ionic conductivity of 1.2 mS cm<sup>−1</sup> and retains 91% capacity over 500 cycles in graphite/NMC532 cells. Moreover, the resulting structural batteries achieved a modulus of 21.7 GPa and a specific energy of 127 Wh kg<sup>−1</sup> based on the total cell weight, which to our knowledge is the highest reported value above 15 GPa. We further demonstrate the application of such structural batteries in a model electric car. The presented design concept enables the industrialization of structural batteries in electric transportation and further applications to improve energy efficiency and multifunctionality.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 12","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12418","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Structural batteries are attractive for weight reduction in electric transportation. For their practical applications excellent mechanical properties and electrochemical performance are required simultaneously, which remains a grand challenge. In this study, we present a new scalable and low-cost design, which uses a quasi-solid polymer electrolyte (QSPE) to achieve both remarkably improved flexural properties and attractive energy density. The QSPE has a high ionic conductivity of 1.2 mS cm−1 and retains 91% capacity over 500 cycles in graphite/NMC532 cells. Moreover, the resulting structural batteries achieved a modulus of 21.7 GPa and a specific energy of 127 Wh kg−1 based on the total cell weight, which to our knowledge is the highest reported value above 15 GPa. We further demonstrate the application of such structural batteries in a model electric car. The presented design concept enables the industrialization of structural batteries in electric transportation and further applications to improve energy efficiency and multifunctionality.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有高机械和电化学性能的准固体聚合物电解质结构电池
结构电池对减轻电动交通工具的重量很有吸引力。为了实现其实际应用,需要同时具备出色的机械性能和电化学性能,这仍然是一个巨大的挑战。在本研究中,我们提出了一种新的可扩展、低成本设计,它使用准固体聚合物电解质(QSPE)来实现显著改善的挠曲性能和极具吸引力的能量密度。QSPE 的离子电导率高达 1.2 mS cm-1,在石墨/NMC532 电池中循环 500 次仍能保持 91% 的容量。此外,这种结构电池的模量达到 21.7 GPa,基于电池总重量的比能量为 127 Wh kg-1,据我们所知,这是目前报道的 15 GPa 以上的最高值。我们进一步展示了这种结构电池在电动汽车模型中的应用。所提出的设计理念实现了结构电池在电动交通领域的产业化,并进一步应用于提高能源效率和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Cover Image Issue Information PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1