Chenjing Shang, Yi Chen, Zhuhang Dai, Yaxiaer Yalikun, Lihua Qian, Pooi See Lee, Yang Yang
The growing utilization of the Ocean Internet of Things (Ocean IoT) has a significant impact on human society. Recent advances in nanotechnology in terms of developing unprecedented structural, mechanical, electrical, chemical, and photonic properties have led to devices that are expected to promote the sustainable growth of the emerging Ocean IoT. This review provides a system-level analysis of nanotechnology-enabled sensors, actuators, energy harvesting, antifouling coatings, and environmental remediation that have been developed, with a focus on their materials, structures, and manufacturing technologies, as well as their merits and drawbacks. The challenges associated with the ecotoxicity of nanotechnology-derived pollutants in marine ecosystems are also discussed. Finally, potential future research directions are presented for this emerging field.
{"title":"Nanotechnology-Enabled Devices for Ocean Internet of Things","authors":"Chenjing Shang, Yi Chen, Zhuhang Dai, Yaxiaer Yalikun, Lihua Qian, Pooi See Lee, Yang Yang","doi":"10.1002/eom2.70003","DOIUrl":"https://doi.org/10.1002/eom2.70003","url":null,"abstract":"<p>The growing utilization of the Ocean Internet of Things (Ocean IoT) has a significant impact on human society. Recent advances in nanotechnology in terms of developing unprecedented structural, mechanical, electrical, chemical, and photonic properties have led to devices that are expected to promote the sustainable growth of the emerging Ocean IoT. This review provides a system-level analysis of nanotechnology-enabled sensors, actuators, energy harvesting, antifouling coatings, and environmental remediation that have been developed, with a focus on their materials, structures, and manufacturing technologies, as well as their merits and drawbacks. The challenges associated with the ecotoxicity of nanotechnology-derived pollutants in marine ecosystems are also discussed. Finally, potential future research directions are presented for this emerging field.</p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 3","pages":""},"PeriodicalIF":10.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Gao, Jeong-Ju Bae, Da Seul Lee, Tae-Youl Yang, Seong Sik Shin
Perovskite solar cells (PSCs) have attracted considerable attention in the field of photovoltaics owing to their high power conversion efficiency (PCE), cost-effective production methods, and versatile applications. However, the widespread use of lead (Pb)-based materials in PSCs poses challenges related to their toxicity and environmental sustainability. This review explores recent advances in the development of Pb-free perovskite materials, such as tin (Sn)-based, germanium (Ge)-based, and other B(IV) and B(III) cation alternatives, while assessing their electronic properties, stability, and performance-enhancing strategies. Additionally, we discuss the use of green solvents and fabrication techniques to minimize their environmental impact. This review aims to guide future research toward safe, efficient, and environmentally sustainable PSC technologies, ensuring that the benefits of solar energy can be harnessed without compromising human health or the environment.