Oleogels: Innovative formulations as fat substitutes and bioactive delivery systems in food and beyond

IF 5.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Structure-Netherlands Pub Date : 2023-10-01 DOI:10.1016/j.foostr.2023.100356
Ashwini Gengatharan , Nur Vaizura Mohamad , Che Nur Mazadillina Che Zahari , Ramya Vijayakumar
{"title":"Oleogels: Innovative formulations as fat substitutes and bioactive delivery systems in food and beyond","authors":"Ashwini Gengatharan ,&nbsp;Nur Vaizura Mohamad ,&nbsp;Che Nur Mazadillina Che Zahari ,&nbsp;Ramya Vijayakumar","doi":"10.1016/j.foostr.2023.100356","DOIUrl":null,"url":null,"abstract":"<div><p>Fats and oils<span><span> provide flavour and texture to food while also promoting satiety. Despite the recommendation to consume primarily </span>unsaturated lipid<span> sources, the liquid state of unsaturated lipids at ambient temperature precludes numerous industrial applications. Moreover, the issue of the adverse effects of trans fatty acids has become more apparent due to research demonstrating their association with coronary diseases, obesity, and type 2 diabetes. Oleogels are liquid oils encapsulated within a thermoreversible, three-dimensional gel network using oleogelators such as waxes, monoglycerides, phospholipids<span>, and phytosterols<span>. Oleogels have been used extensively in numerous food formulations to reduce the amount of saturated and trans fatty acids. In recent decades, oleogel research has been active, producing numerous oleogels with desirable characteristics such as thermal resistance, texture, and structural stability. In addition, oleogels have been incorporated into several food matrices. In some instances, oleogels in these food products resemble the textural characteristics of products made with conventional hardstock fat, improve dietary nutrition, exhibit high physical and oxidative stability, and have a high oil-binding capacity. These advancements demonstrate the potential of oleogels, but certain disadvantages and a lack of in-depth information on various aspects have delayed their commercialization in the food industry. This narrative review aims to outline the preparation of oleogels, their application in selected food products, their digestibility, other applications of oleogels, such as bioactive delivery in wound healing and antibacterial properties, and the existing challenges in exploring oleogels. Therefore, the content presented in this article offers insights and opportunities for broadening the range of potential uses of oleogels in the food industry and beyond.</span></span></span></span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100356"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000497","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fats and oils provide flavour and texture to food while also promoting satiety. Despite the recommendation to consume primarily unsaturated lipid sources, the liquid state of unsaturated lipids at ambient temperature precludes numerous industrial applications. Moreover, the issue of the adverse effects of trans fatty acids has become more apparent due to research demonstrating their association with coronary diseases, obesity, and type 2 diabetes. Oleogels are liquid oils encapsulated within a thermoreversible, three-dimensional gel network using oleogelators such as waxes, monoglycerides, phospholipids, and phytosterols. Oleogels have been used extensively in numerous food formulations to reduce the amount of saturated and trans fatty acids. In recent decades, oleogel research has been active, producing numerous oleogels with desirable characteristics such as thermal resistance, texture, and structural stability. In addition, oleogels have been incorporated into several food matrices. In some instances, oleogels in these food products resemble the textural characteristics of products made with conventional hardstock fat, improve dietary nutrition, exhibit high physical and oxidative stability, and have a high oil-binding capacity. These advancements demonstrate the potential of oleogels, but certain disadvantages and a lack of in-depth information on various aspects have delayed their commercialization in the food industry. This narrative review aims to outline the preparation of oleogels, their application in selected food products, their digestibility, other applications of oleogels, such as bioactive delivery in wound healing and antibacterial properties, and the existing challenges in exploring oleogels. Therefore, the content presented in this article offers insights and opportunities for broadening the range of potential uses of oleogels in the food industry and beyond.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
油凝胶:作为脂肪替代品的创新配方和食品及其他领域的生物活性输送系统
脂肪和油为食物提供风味和质地,同时也促进饱腹感。尽管建议主要食用不饱和脂质来源,但不饱和脂质在室温下的液态排除了许多工业应用。此外,由于研究表明反式脂肪酸与冠状动脉疾病、肥胖和2型糖尿病有关,反式脂肪酸的不良影响问题变得更加明显。油凝胶是液体油封装在热可逆的三维凝胶网络中,使用油凝胶剂,如蜡,单甘油酯,磷脂和植物甾醇。油凝胶已广泛用于许多食品配方,以减少饱和脂肪酸和反式脂肪酸的数量。近几十年来,油凝胶的研究一直很活跃,产生了许多具有理想特性的油凝胶,如耐热性、质地和结构稳定性。此外,油凝胶已被纳入许多食品基质中。在某些情况下,这些食品中的油凝胶类似于传统硬脂肪制成的产品的质地特征,改善膳食营养,表现出高物理和氧化稳定性,并具有高油结合能力。这些进步表明了油凝胶的潜力,但某些缺点和缺乏对各个方面的深入了解推迟了它们在食品工业中的商业化。本文综述了油凝胶的制备、在特定食品中的应用、其可消化性、油凝胶的其他应用,如伤口愈合中的生物活性传递和抗菌性能,以及探索油凝胶存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Structure-Netherlands
Food Structure-Netherlands Chemical Engineering-Bioengineering
CiteScore
7.20
自引率
0.00%
发文量
48
期刊介绍: Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.
期刊最新文献
Structural and in vitro starch digestion of wheat flour noodles by calcium mediated gelation of low methoxyl pectin Changes in the rheological, textural, microstructural and in vitro antioxidant properties of biscuit dough by incorporation of the extract and fiber-rich residue obtained through green extraction of defatted date seeds Quantifying the distribution of proteins at the interface of oil-in-water food emulsions Capillary flow-MRI of micronized fat crystal dispersions: Effect of shear history on microstructure and flow Impact of hydrocolloids on 3D meat analog printing and cooking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1